"What a Loyola MS 3 should know about Oxygenation, CO_{2} elimination, and PFT's"

Learning Objectives

- Oxygenation:
- Distinguish the various mechanisms of hypoxia
- Know how to calculate the A-a Gradient
- Understand oxygen content, delivery, and extraction
- Recognize the various oxygen delivery devices
- CO_{2} Elimination:
- Know the principles determining one's CO_{2}
- Understand the concept of Dead Space Ventilation
- PFT's:
- Be able to interpret PFT's recognizing Obstruction, Restriction, and Diffusion Impairments

Approach to Hypoxemia

- Disease-Based
- COPD/Asthma
- Pulmonary Edema
- ARDS
- Pneumonia
- ILD
- Hypoventilation
- Altitude
- Decreased FIO2
- Cirrhosis
- Pulmonary Embolism
- Mechanism-Based
- VQ Mismatch
- Shunt
- Diffusion Impairment
- Hypoventilation
- Decreased Barometric Pressure
- Decreased $\mathrm{F}_{1} \mathrm{O}_{2}$
- Diffusion-Perfusion Impairment
- Mixed?

- - Normal Physiology

Important Principles:

- Ventilation = Perfusion throughout
- More of both at the bases
- Less of both at the apices
- In health, no matter how low the PmvO_{2} may be, PaO_{2} will be normal

$$
\mathrm{P}_{\mathrm{mv}} \mathrm{O}_{2}=40 \mathrm{mmHg} \quad \mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=100 \mathrm{~mm} \mathrm{Hg}
$$

Mechanisms of Hypoxia:

VQ Mismatch

- Decreased V relative to Q
- O_{2} exits alveolus more quickly than enters via bronchi
- Hypoxia is MILD
- Hypoxia improves with supplemental O_{2}
- Causes:
- Asthma, COPD
- Pulmonary Emboli
- ILD

Mechanisms of Hypoxia:

Shunt

- No O_{2} reaches some set of pulmonary capillaries
- Hypoxia is SEVERE
- Hypoxia does NOT improve with supplemental O_{2}
- Causes:
- Alveolar Disease:
- NO ventilation to alveoli that are still perfused
- Blood
- Pus
- Water
- Pulmonary Edema
- ARDS
- Atelectasis
- Anatomic Shunt
- Pulmonary AVM
- PFO, ASD, VSD

Mechanisms of Hypoxia: Diffusion Impairment

Mechanisms of Hypoxia: Diffusion Impairment

- NOT a common problem
- Blood is normally fully oxygenated within 25% of its transit through the alveolar capillaries.
- Therefore, even if slowed by a diffusion barrier, blood usually reaches full saturation
- Hypoxia is MILD
- Hypoxia improves with supplemental O_{2}

Mechanisms of Hypoxia: Diffusion-Perfusion Impairment

- Seen occasionally in cirrhosis
- Dilated capillaries pose an impairment to full oxygenation

Mechanisms of Hypoxia

- VQ Mismatch
- Shunt
- Diffusion Impairment
- Diffusion-Perfusion Impairment
- Hypoventilation
- Altitude
- Decreased $\mathrm{F}_{1} \mathrm{O}_{2}$

The A-a Gradient

Two Questions

1. Which of these people has a lower than expected

$$
\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2} \text { ? }
$$

A. A MS3 in SSOM with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}$ = 95
B. 72 yo Doc Hering in SSOM with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=80$
c. 50 yo Dr . Michelfelder in flight with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=50$
D. A MS3 running at top speed with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=70$
2. Which ABG illustrates abnormal O_{2} Transfer from Alveolus to Capillary?

		$\mathrm{PaCO}_{2}-$
A.	40	PaO_{2}
B.	60	70
C.	20	95

The A - a Gradient

calculated measured

- Mathematically $=\mathrm{P}_{\mathrm{Alv}} \mathrm{O}_{2}-\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}$
- Why is there any gradient?
- Normal Anatomic and Physiologic Shunting
- What is a normal gradient?
- The A-a is normally less than age/4 + 4
- What does an elevated A-a gradient imply?
- A higher A-a gradient implies "disease" decreasing the efficiency of oxygen transfer from the atmosphere to the arterial circulation
o Answers the question "Is your patient's PaO_{2} 'normal'?"

Under "normal" circumstances....

... breathing room air at sea level

A "normal" Alveolar O_{2} is:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{Alv}} \mathrm{O}_{2}= & \left(\left[\left(\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right) \times \mathrm{F}_{1} \mathrm{O}_{2}\right]-\left(\mathrm{P}_{\mathrm{a}} \mathrm{CO} / \mathrm{RQ}\right)\right. \\
& {[(760-47) \times .21]-\left(\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2} / \mathrm{RQ}\right) } \\
& 150 \\
& -(40 / 0.8)
\end{aligned}
$$

Therefore, $\mathrm{P}_{\mathrm{Alv}} \mathrm{O}_{2}$ normally* $=150-50=\underline{\mathbf{1 0 0}}$
${ }^{*}$ But $\ldots . . P_{B}, F_{1} O_{2}, P_{a} C O_{2}$, and $R Q$ can all be manipulated

1. Which of these people has a lower than expected $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}$?
A. A MS3 in SSOM with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}$ = 95
B. 72 yo Doc Hering in SSOM with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=80$
c. 50 yo Dr. Michelfelder in flight with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=50$
D. A MS3 running at top speed with a $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}=70$
@ sea level, on room air, normal CO_{2} and RQ means $\mathrm{P}_{\mathrm{Alv}} \mathrm{O}_{2}$ should be @ 100 mm Hg

- $\mathrm{A}-\mathrm{a}=100-95=5 .$. Normal
- $A-a=100-80=20$
- Age/4 + $4=22$..... Normal
- At 8000 feet, P_{B} is only 565
- $(565-47) * 0.21-(40 / 0.8)=59$
- $59-50=9$

Normal

- To repeat, normal people don't desaturate... ABNORMAL

2. Which ABG illustrates abnormal O_{2} Transfer from Alveolus to Capillary?

		$\mathrm{PaCO}_{2}-$
A.	40	PaO_{2}
B.	60	70
C.	20	95

@ sea level, on room air, with a normal RQ,

$$
\mathrm{P}_{\mathrm{Alv}} \mathrm{O}_{2}=150-\mathrm{PaCO}_{2} / 0.8
$$

$\underline{P}_{\mathrm{alv}} \underline{\mathrm{O}}_{2} \quad \underline{\text { A-a }} \quad \underline{\text { Barrier? }}$

A. 100	5	NO
B. 75	5	NO
C. 125	30	YES

Patient A is simply what we expect
Patient B is simply hypo-ventilating

Patient C is has SIGNIFICANTLY abnormal oxygen transfer despite an overtly normal $\mathrm{PaO}_{2}!!!$

Clinical Question

- Treatment for pneumocystis jiroveci pneumonia in a patient whose $A B G$ is 7.48/30/70 on room air?

How to describe the "degree" of hypoxia

- The "P/F" Ratio
- $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2} / \mathrm{F}_{1} \mathrm{O}_{2}$
- Normally...
- $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2} / \mathrm{F}_{1} \mathrm{O}_{2} \cong 100 / 0.2=500$
- Lower P/F Ratios imply worsening degrees of hypoxia
- P/F < 300 is bad enough hypoxia to count as ARDS

Other Oxygen Issues:

- How many mL of O_{2} are in each dL of:
- arterial blood?
- venous blood?
- How much many mL of O_{2} are delivered per minute to the tissues?
- What percent of the delivered O_{2} is extracted by the tissues at rest?
- How are these numbers useful clinically?

Oxygen Content

o Conceptually:
Oxygen is carried in the blood as both:

- Hemoglobin-Bound Oxygen
- Dissolved Oxygen

Oxygen Content

Mathematically:

- $\mathrm{C}_{\mathrm{x}} \mathrm{O}_{2}=(\mathrm{Hgb})\left(\mathrm{S}_{\mathrm{x}} \mathrm{O}_{2}\right)(1.34)+\left(\mathrm{P}_{\mathrm{x}} \mathrm{O}_{2}\right)(0.003)$
- $\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}=(15)(1)(1.34)+(95)(0.003)$
$\cong 20 \mathrm{~mL} \mathrm{O} / \mathrm{dL}$ Blood
- $\mathrm{C}_{\mathrm{mv}} \mathrm{O}_{2}=(15)(\underline{0.75})(1.34)+(\underline{40})(0.003)$
$\cong 15 \mathrm{~mL} \mathrm{O} 2 / \mathrm{dL}$ blood
- $\mathrm{D}_{\mathrm{a}-\mathrm{v}} \mathrm{O}_{2}=\mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}-\mathrm{C}_{\mathrm{mv}} \mathrm{O}_{2}$
$=20-15=5 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{dL}$ blood
i.e., the difference in O_{2} content between arterial and venous blood

Oxygen Delivery

- Conceptually:
- The amount of oxygen delivered to the tissues is the product of cardiac output and oxygen content.
- Mathematically:
- $\mathrm{D}_{\mathrm{a}} \mathrm{O}_{2}=$ C.O. $\times \mathrm{C}_{\mathrm{a}} \mathrm{O}_{2}$
$=5 \mathrm{Lpm} \times 20 \mathrm{~mL} \mathrm{O} \mathrm{O}_{2} / \mathrm{dL}(\times 10 \mathrm{dL} / \mathrm{L})$
$=1000 \mathrm{~mL} \mathrm{O} \mathrm{O}_{2} / \mathrm{min}$

Oxygen Extraction

- $\mathrm{VO}_{2}=$ Oxygen Consumption
- Normal = $250 \mathrm{cc} / \mathrm{min}$ at rest
- Extraction Ratio
- \% of delivered oxygen actually consumed
- At rest:
- 250 cc/min consumed
- 1000 cc/min delivered
- ER = 25\%
- Can increase to 75\%

Oxygen Content, Delivery, Extraction: Summary

- Evidence of Inadequate Delivery relative to Consumption:
- ${ }^{\wedge} \mathrm{C}_{\mathrm{mv}} \mathrm{O}_{2}$
- $\hat{-1} \mathrm{D}_{\mathrm{a}-\mathrm{v}} \mathrm{O}_{2}$
- 介 ER

Oxygen Delivery Devices

- Nasal Cannula
- 24-44\% $\mathrm{F}_{1} \mathrm{O}_{2}$
$\mathrm{F}_{1} \mathrm{O}_{2}$ increases $\sim 3 \%$
for each additional
liter per minute

Oxygen Delivery Devices

- Nasal Cannula
- $24-44 \% \mathrm{~F}_{1} \mathrm{O}_{2}$
- Simple Face Mask $40-60 \% \mathrm{~F}_{1} \mathrm{O}_{2}$

Oxygen Delivery Devices

- Nasal Cannula
- $24-44 \% \mathrm{~F}_{1} \mathrm{O}_{2}$
- Simple Face Mask
- 40-60\% $\mathrm{F}_{1} \mathrm{O}_{2}$
- Non-Rebreather Mask
- "reservoir" with one-way valve
- 60-100\% $\mathrm{F}_{1} \mathrm{O}_{2}$

Oxygen Delivery Devices

- Venturi Mask
- Includes a valve allowing "precise" $\mathrm{F}_{1} \mathrm{O}_{2}$ delivery
- ? Advantage for COPD patients
- $24-60 \% \mathrm{~F}_{1} \mathrm{O}_{2}$

Oxygen Delivery Devices

- Optiflow ${ }^{\circledR}$
"Nasal High Flow Oxygen"
- Heated and Humidified
- "Flushes" out dead space
- Provides a tiny amount of CPAP
- Up to $100 \% \mathrm{~F}_{1} \mathrm{O}_{2}$

Oxygen Delivery Devices

- Nasal Cannula
- $24-44 \% \mathrm{~F}_{1} \mathrm{O}_{2}$
- Simple Face Mask
- $40-60 \% \mathrm{~F}_{1} \mathrm{O}_{2}$
- Venturi Mask
- 24-60\% $\mathrm{F}_{1} \mathrm{O}_{2}$
- Nasal HF O2
- Up to $100 \% \mathrm{~F}_{1} \mathrm{O}_{2}$
- Non-Rebreather Mask
- 60-100\% $\mathrm{F}_{1} \mathrm{O}_{2}$

What about $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$?

Conceptually:

- $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$ depends upon how much CO_{2} is produced vs how much is eliminated.
- CO_{2} elimination depends upon Alveolar Ventilation.
- i.e., Total Ventilation minus Wasted Ventilation

Hence, the determinants of $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$ are:

- CO_{2} Production
- Total Minute Ventilation
- Wasted Ventilation (i.e., "dead space" or $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{T}$)

$\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$

Mathematically...

- $\left.\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2} \propto \mathrm{VCO}_{2}\right)\left(\mathrm{MV} \mathrm{x}\left(1-\mathrm{VD}_{\mathrm{D}} \mathrm{V}_{\mathrm{T}}\right)\right]$
- $\mathrm{VCO}_{2}=\mathrm{CO}_{2}$ Production
- Normal = $200 \mathrm{ml} / \mathrm{min}$
- Increases in VCO_{2} are not a clinically relevant cause of hypercapnea
- MV = Minute Ventilation
- Normal = 5 lpm at rest
- Up to 100 lpm at maximum aerobic activity
- Obviously, hypoventilation leads to hypercapnea
- Therefore, if there is no increased VCO2 or decreased MV, hypercapnea must be due to increased V_{D} / V_{T}

Dead Space?
 $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2} \propto \mathrm{VCO}_{2} /\left[\mathrm{MV} \times\left(1-\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}\right)\right]$

- $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}=$ "Dead Space" Ventilation
- i.e., the percent of each tidal volume which does NOT participate in gas exchange
- Includes ‘anatomic’ dead space
- i.e., the air in the trachea and bronchi down to the conducting airways
- AND includes physiologic dead space
- i.e., air in alveoli that nonetheless is not participating in gas exchange
- Three Questions:
- How much dead space is normal?
- What are causes of increased dead space?
- What is the consequence of increased dead space?
- Normally:
- $\mathrm{V}_{\mathrm{T}} \cong 500 \mathrm{cc}$
- $V_{D} \cong 1 \mathrm{cc} /$ pound $\cong 150 \mathrm{cc}$
- $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}} \cong 150 / 500 \cong 30 \%$ of an average TV
- Decreased Perfusion of Ventilated Lung:
- Pulmonary Emboli
- Pulmonary Hypertension
- Volume Depletion
- Increased Alveolar Pressures:
- PEEP (mechanical ventilation)
- auto-PEEP (emphysema)

V_{D} / V_{T} Why does it matter?

- If increased V_{D} / V_{T}, one must increase minute ventilation which increases work of breathing.
o Think of increased $\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}$, whenever:
- Increased $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$ AND/OR
- Normal $\mathrm{P}_{\mathrm{a}} \mathrm{CO}_{2}$ with increased MV

PFT's - practically speaking....

- Calculate expected values:
- Age
- Height
- Sex
- Race
- Measure patient values
- Compare
- "normal" is defined by measured values that are between 80% and 120% of the predicted values

PFT's: 3 Main Components

Learning Objectives

- Oxygenation:
- Distinguish the various mechanisms of hypoxia
- Know how to calculate the A-a Gradient
- Understand oxygen content, delivery, and extraction
- Recognize the various oxygen delivery devices
- CO_{2} Elimination:
- Know the principles determining one's CO_{2}
- Understand the concept of Dead Space Ventilation
- PFT's:
- Be able to interpret PFT's recognizing Obstruction, Restriction, and Diffusion Impairments

