

"What a Loyola MS 3 should know about Oxygenation, CO₂ elimination, and PFT's"

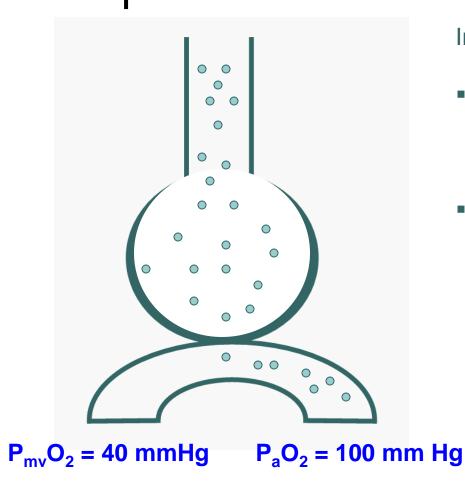
Learning Objectives

• Oxygenation:

- Distinguish the various mechanisms of hypoxia
- Know how to calculate the A-a Gradient
- Understand oxygen content, delivery, and extraction
- Recognize the various oxygen delivery devices
- CO₂ Elimination:
 - Know the principles determining one's CO₂
 - Understand the concept of Dead Space Ventilation
- PFT's:
 - Be able to interpret PFT's recognizing Obstruction, Restriction, and Diffusion Impairments

Approach to Hypoxemia

Disease-Based

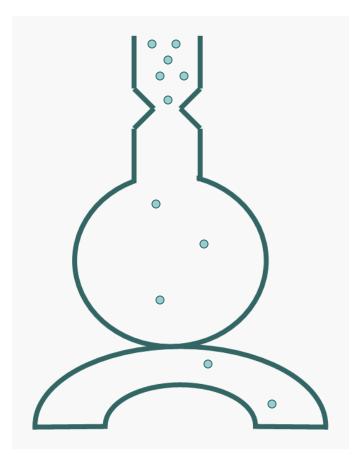

- COPD/Asthma
- Pulmonary Edema
- ARDS
- Pneumonia
- ILD
- Hypoventilation
- Altitude
- Decreased FIO2
- Cirrhosis
- Pulmonary Embolism

• Mechanism-Based

- VQ Mismatch
- Shunt

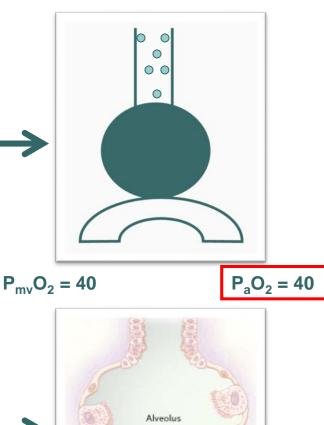
- Diffusion Impairment
- Hypoventilation
- Decreased Barometric Pressure
- Decreased F₁O₂
- Diffusion-Perfusion Impairment
- Mixed ?

Normal Physiology

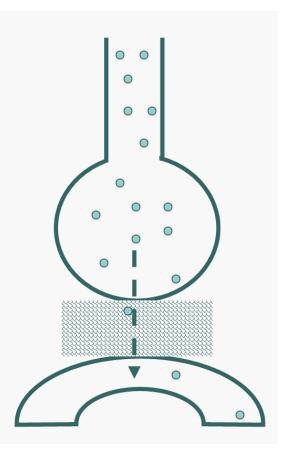


Important Principles:

- Ventilation = Perfusion throughout
 - More of both at the bases
 - Less of both at the apices
- In health, no matter how low the PmvO₂ may be, PaO₂ will be normal

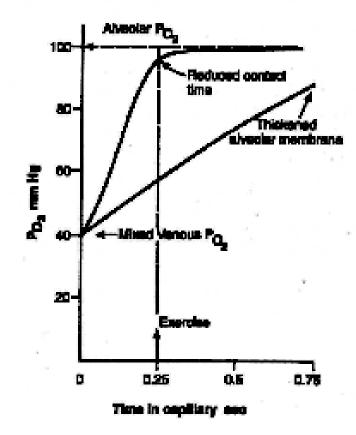

Mechanisms of Hypoxia: VQ Mismatch

- Decreased V relative to Q
- O₂ exits alveolus more quickly than enters via bronchi
- Hypoxia is MILD
- Hypoxia improves with supplemental O₂
- Causes:
 - Asthma, COPD
 - Pulmonary Emboli
 - ILD

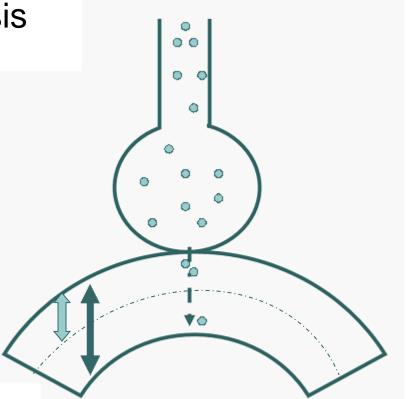

Mechanisms of Hypoxia: Shunt

- No O₂ reaches some set of pulmonary capillaries
- Hypoxia is SEVERE
- Hypoxia does NOT improve with supplemental O₂
- Causes:
 - Alveolar Disease:
 - NO ventilation to alveoli that are still perfused
 - Blood
 - Pus
 - Water
 - Pulmonary Edema
 - ARDS
 - Atelectasis
 - Anatomic Shunt
 - Pulmonary AVM
 - PFO, ASD, VSD

Shunt


Mechanisms of Hypoxia: Diffusion Impairment

Mechanisms of Hypoxia: Diffusion Impairment


• NOT a common problem

- Blood is normally fully oxygenated within 25% of its transit through the alveolar capillaries.
- Therefore, even if slowed by a diffusion barrier, blood usually reaches full saturation
- Hypoxia is MILD
- Hypoxia improves with supplemental O₂

Mechanisms of Hypoxia: Diffusion-Perfusion Impairment

- Seen occasionally in cirrhosisDilated capillaries pose an
 - impairment to full oxygenation

Mechanisms of Hypoxia

- VQ Mismatch
- Shunt
- Diffusion Impairment
- Diffusion-Perfusion Impairment
- Hypoventilation
- o Altitude
- Decreased F_1O_2

The A-a Gradient

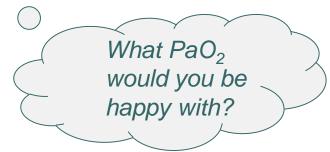
Two Questions

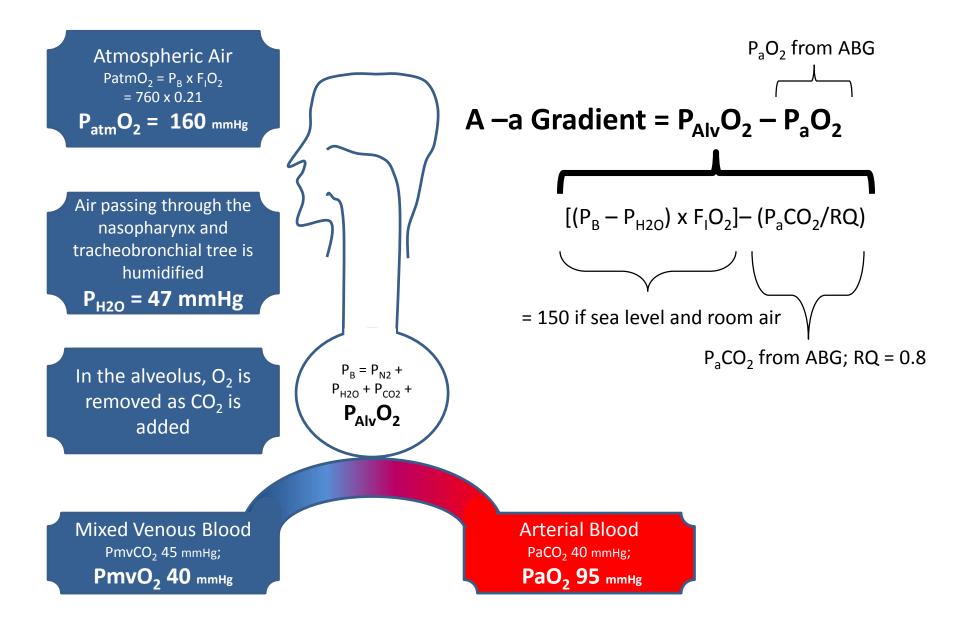
- 1. Which of these people has a lower than expected P_aO_2 ?
- A. A MS3 in SSOM with a P_aO_2 = 95
- B. 72 yo Doc Hering in SSOM with a $P_aO_2 = 80$
- c. 50 yo Dr. Michelfelder in flight with a $P_aO_2 = 50$
- D. A MS3 running at top speed with a $P_aO_2 = 70$

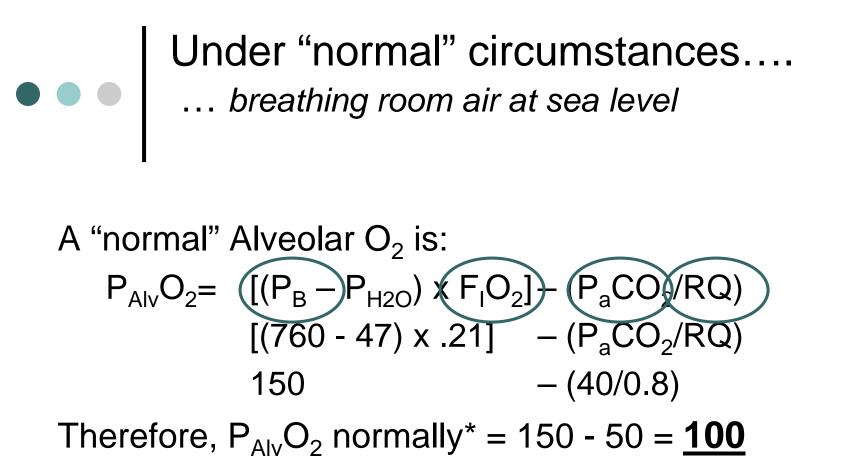
2. Which ABG illustrates abnormal O₂ Transfer from Alveolus to Capillary?

	<u>PaCO₂</u>	<u>PaO₂</u>
A.	40	95
Β.	60	70
C.	20	95

Write your answers down...


• • • The A – a Gradient


calculated measured


• Mathematically = $P_{Alv}O_2 - P_aO_2$

- Why is there any gradient?
 - Normal Anatomic and Physiologic Shunting
- What is a normal gradient?
 - The A-a is normally less than age/4 + 4
- What does an elevated A-a gradient imply?
 - A higher A-a gradient implies "disease" decreasing the efficiency of oxygen transfer from the atmosphere to the arterial circulation

 Answers the question "Is your patient's PaO₂ 'normal'?"[◦] ○

*But P_B , F_IO_2 , P_aCO_2 , and RQ can all be manipulated

1. Which of these people has a lower than expected P_aO_2 ?

- A. A MS3 in SSOM with a P_aO_2 = 95
- B. 72 yo Doc Hering in SSOM with a $P_aO_2 = 80$
- c. 50 yo Dr. Michelfelder in flight with a $P_aO_2 = 50$
- D. A MS3 running at top speed with a $P_aO_2 = 70$

@ sea level, on room air, normal CO_2 and RQ means $P_{Alv}O_2$ should be @ 100 mm Hg

- A-a = 100-95 = 5... Normal
- A-a = 100-80 = 20
 - Age/4 + 4 = 22.... Normal
- At 8000 feet, P_B is only 565
 - (565-47) * 0.21 (40/0.8) = 59
 - 59-50 = 9 Normal
- To repeat, normal people don't desaturate...
 ABNORMAL

2. Which ABG illustrates abnormal O₂ Transfer from Alveolus to Capillary?

	<u>PaCO₂</u>	<u>PaO₂</u>
Α.	40	95
В.	60	70
C.	20	95

@ sea level, on room air, with a normal RQ, $P_{Alv}O_2 = 150 - PaCO_2/0.8$

$\underline{P}_{\underline{alv}}\underline{O}_{\underline{2}}$	<u>A-a</u>	Barrier?
A. 100	5	NO
B. 75	5	NO
C. 125	30	YES

Patient A is simply what we expect

Patient B is simply hypo-ventilating

Patient C is has SIGNIFICANTLY abnormal oxygen transfer despite an overtly normal PaO₂!!!

Clinical Question

• Treatment for *pneumocystis jiroveci* pneumonia in a patient whose ABG is 7.48/30/70 on room air? How to describe the "degree" of hypoxia

o The "P/F" Ratio

- P_aO_2/F_1O_2
- Normally...
 - $P_a O_2 / F_1 O_2 \cong 100 / 0.2 = 500$
- Lower P/F Ratios imply worsening degrees of hypoxia
 - P/F < 300 is bad enough hypoxia to count as ARDS

• • Other Oxygen Issues:

• How many mL of O_2 are in each dL of:

- arterial blood?
- venous blood?
- How much many mL of O₂ are delivered per minute to the tissues?
- What percent of the delivered O₂ is extracted by the tissues at rest?
- How are these numbers useful clinically?

Oxygen Content

- o Conceptually:
 - Oxygen is carried in the blood as both:
 - Hemoglobin-Bound Oxygen
 - Dissolved Oxygen

Mathematically:

- C_xO_2 = (Hgb)(S_xO_2)(1.34) + (P_xO_2)(0.003)
- $C_aO_2 = (15)(1)(1.34) + (95)(0.003)$ $\cong 20 \text{ mL } O_2/dL \text{ Blood}$
- $C_{mv}O_2 = (15)(\underline{0.75})(1.34) + (\underline{40})(0.003)$ $\cong 15 \text{ mL } O_2/\text{dL blood}$
- $D_{a-v}O_2 = C_aO_2 C_{mv}O_2$ = 20 - 15 = 5 mL O₂/dL blood

i.e., the difference in O_2 content between arterial and venous blood

Oxygen Delivery

• Conceptually:

- The amount of oxygen delivered to the tissues is the product of cardiac output and oxygen content.
- Mathematically:

•
$$D_a O_2 = C.O. \times C_a O_2$$

= 5 Lpm x 20 mL O_2/dL (x 10 dL/L)
= 1000 mL O_2/min

Oxygen Extraction

• $VO_2 = Oxygen Consumption$

- Normal = 250 cc/min at rest
- Extraction Ratio
 - % of delivered oxygen actually consumed
 - At rest:
 - 250 cc/min consumed
 - 1000 cc/min delivered
 - ER = 25%
 - Can increase to 75%

Oxygen Content, Delivery, Extraction:
 Summary

• Evidence of Inadequate Delivery relative to Consumption:

- ↓C_{mv}O₂
- ① ER

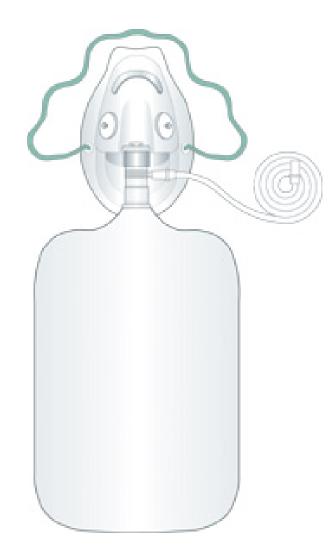
• Nasal Cannula

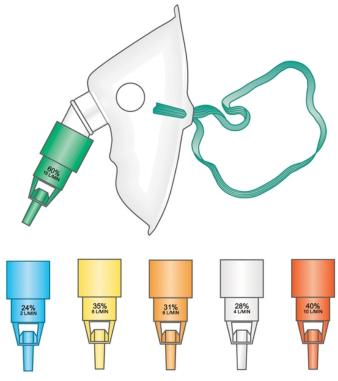
• 24-44% F_1O_2 F_1O_2 increases ~ 3% for each additional liter per minute

Nasal Cannula
24-44% F₁O₂
Simple Face Mask
40-60% F₁O₂

Nasal Cannula

24-44% F₁O₂


Simple Face Mask


40-60% F₁O₂

Non-Rebreather Mask

"reservoir" with

- "reservoir" with one-way valve
- 60-100% F_IO₂

Interchangeable Venturi Valves

Venturi Mask

- Includes a valve allowing "precise"
 F_IO₂ delivery
 - ? Advantage for COPD patients

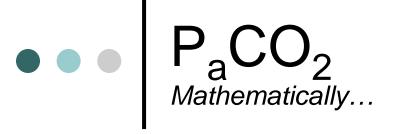
• Optiflow[®]

"Nasal High Flow Oxygen"

- Heated and Humidified
- "Flushes" out dead space
- Provides a tiny amount of CPAP
- Up to 100% F_IO₂

- Nasal Cannula
 - 24-44% F₁O₂
- Simple Face Mask
 - 40 –60% F_IO₂
- Non-Rebreather Mask
 - 60-100% F_IO₂

- Venturi Mask
 - 24-60% F_IO₂
- Nasal HF O2
 - Up to 100% F_1O_2


• • What about P_aCO_2 ?

Conceptually:

- P_aCO₂ depends upon how much CO₂ is produced vs how much is eliminated.
- CO₂ elimination depends upon Alveolar Ventilation.
 i.e., Total Ventilation minus Wasted Ventilation

Hence, the determinants of P_aCO₂ are:

- CO₂ Production
- Total Minute Ventilation
- Wasted Ventilation (i.e., "dead space" or V_D/V_T)

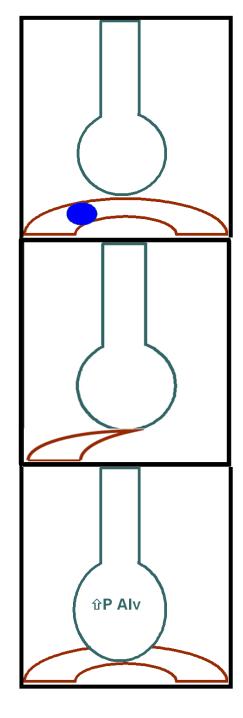
• $P_aCO_2 \propto VCO_2$ [MV x) $(1 - V_D/$ • $VCO_2 = CO_2$ Production

- Normal = 200 ml/min
- Increases in VCO₂ are <u>not</u> a clinically relevant cause of hypercapnea
- MV = Minute Ventilation
 - Normal = 5 lpm at rest
 - Up to 100 lpm at maximum aerobic activity
 - Obviously, hypoventilation leads to hypercapnea
- Therefore, if there is no increased VCO2 or decreased MV, hypercapnea must be due to increased $V_{\rm D}/V_{\rm T}$

• • • Dead Space? $P_aCO_2 \propto VCO_2 / [MV \times (1 - V_D/V_T)]$

• V_D/V_T = "Dead Space" Ventilation

- i.e., the percent of each tidal volume which does NOT participate in gas exchange
 - Includes 'anatomic' dead space
 - i.e., the air in the trachea and bronchi down to the conducting airways
 - AND includes physiologic dead space
 - i.e., air in alveoli that nonetheless is not participating in gas exchange
- Three Questions:
 - How much dead space is normal?
 - What are causes of increased dead space?
 - What is the consequence of increased dead space?


• • • $|V_D/V_T|$

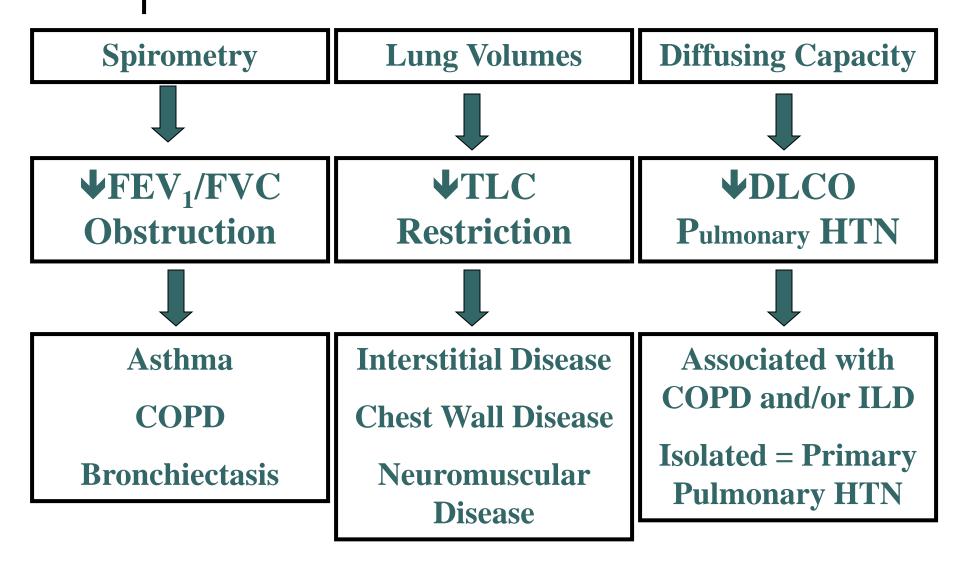
• Normally:

- $V_T \simeq 500 \text{ cc}$
- $V_D \simeq 1$ cc/pound $\simeq 150$ cc
- $V_D/V_T \simeq 150/500 \simeq 30\%$ of an average TV

• • • $|V_D/V_T$

- Causes of increased V_D/V_T :
 - Decreased Perfusion of Ventilated Lung:
 - Pulmonary Emboli
 - Pulmonary Hypertension
 - Volume Depletion
 - Increased Alveolar Pressures:
 - PEEP (mechanical ventilation)
 - auto-PEEP (emphysema)

• • V_D/V_T Why does it matter?


- If increased V_D/V_T , one must increase minute ventilation which increases work of breathing.
- Think of increased V_D/V_T , whenever:
 - Increased P_aCO₂
 AND/OR
 - Normal P_aCO₂ with increased MV

PFT's – practically speaking....

• Calculate expected values:

- Age
- Height
- Sex
- Race
- Measure patient values
- Compare
 - "normal" is defined by measured values that are between 80% and 120% of the predicted values

PFT's: 3 Main Components

Learning Objectives

• Oxygenation:

- Distinguish the various mechanisms of hypoxia
- Know how to calculate the A-a Gradient
- Understand oxygen content, delivery, and extraction
- Recognize the various oxygen delivery devices
- CO₂ Elimination:
 - Know the principles determining one's CO₂
 - Understand the concept of Dead Space Ventilation
- PFT's:
 - Be able to interpret PFT's recognizing Obstruction, Restriction, and Diffusion Impairments