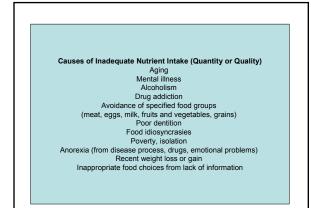
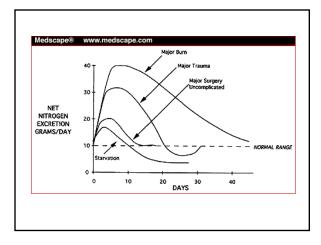
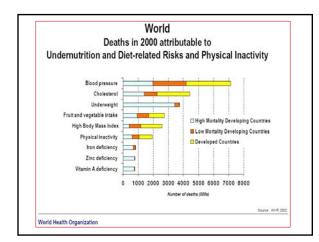
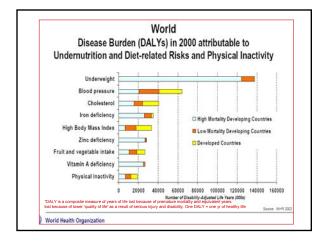

General Principles: Multisystem processes – Nutrition (from 2004 Content Description and Sample Test Materials)

- generation, expenditure and storage of energy at the whole-body level
- assessment of nutritional status across the lifespan, including calories, proteins, essential nutrients, hypoalimentation
- functions of nutrients, including essential, trans-fatty acids, cholesterol
- protein-calorie malnutrition
- vitamin deficiencies and/or toxicities
- mineral deficiencies and toxicities
- eating disorders (e.g., obesity, anorexia, bulimia)

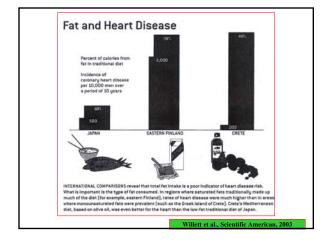



rotein usefulness/quality measures and essential amino acids	Food	PDCAAS (%)
	egg white	100
a. BV, Biological Value is roughly the	milk protein	100
proportion of dietary protein absorbed	tuna	100
that is used by the body. Limited because it does not account for protein	ground beef	97
digestibility	chicken dogs	97
algootbinty	soy protein	94
b. NPU. Net Protein Utilization takes into	whole wheat-pea flour*	82
account BV and digestibility	garbanzos	69
Ŭ Î	kidney beans	68
c. PDCAAS, Protein Digestibility-	peas	67
Corrected Amino Acid Score is a	pork	63
recent improvement over NPU that	lentils	52
corrects for "true" digestibility	peanuts	52
THE COMPOSITION OF ESSENTIAL AMINO ACIDS	whole wheat	40

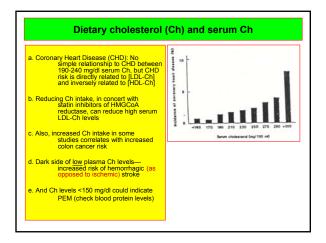




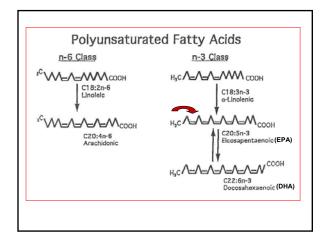
Disease	Clinical setting	Time course	Clinical features	Laboratory findings	Clinical course	Mortality
MARASMUS (Childbood starvation)	Calorie V Intake		- Starved appearance Weight < \$0% standard for height	 Creatinine-height index <60% standard 	 Reasonably preserved responsiveness to short term stress 	Relatively low unless under- lying disease
KWASHIORKOR	↓ Protein intake during stres state		Well-nourished appearance Edema Easy hair pluckability	 Serum albumin <2.8 g/dl Total iron-binding capacity <200 µg/dl Lymphocytes <1500/mm² Anergy 	 Infections Poor wound healing Decubitus ulcers skin hreakdown 	High

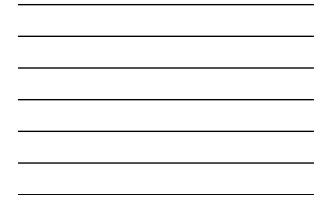


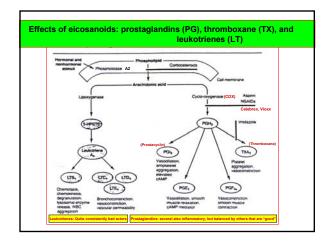
Actual Causes of Death in the United States, 2000

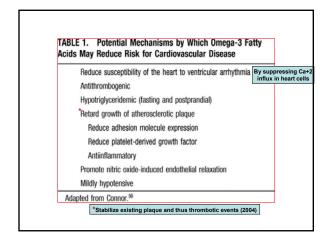

	Ali H. Mokdad, PhD		Context Modifiable behavioral risk factors are leading causes of mortality in the United
	James S. Marks, MD, MPH		States. Quantifying these will provide insight into the effects of recent frends and the implications of missed prevention opportunities.
	Donna F. Stroup, PhD, M	Sc	
	Julie L. Gerberding, MD,	MPH	Objectives To identify and quantify the leading causes of mortality in the United States.
			Design Comprehensive MEDLINE search of English-language articles that identified epidemiological, chincal, and laboratory studies inling nisk behaviors and mortally. The search was initially restricted to articles published during or after 1990, but we label initially end of the search of the search of the search of the during or after 1990. The search of the during or the cases of the cases of the search of the and number of defaults. The estimates of cause of death were computed by multiply- ing estimates of the cause-attributable fraction of preventiable deaths with the total mortally data.
			Main Outcome Measures Actual causes of death.
			Results The leading causes of death in 2000 were tobacco (435000 deaths; 18.1% of total US deaths), poor diet and physical inactivity (400000 deaths; 16.6%), and
	offs in the United States in 1990 and 2000		alcohol consumption (85000 deaths; 3.5%). Other actual causes of death were mi-
Actual Caute	No. (%) in 1902*	No. (%) 41200	crobial agents (75000), toxic agents (55000), motor vehicle crashes (43000), inci-
(thereas)	400.000 (18)	400,000 (7.8.1	dents involving firearms (29000), sexual behaviors (20000), and illicit use of drugs
for detail physical tractivity.		400000-/16.6	(17000).
Kithi comunitivi	100 000 dis	#5000-0.9	
Noteiwi aperte	00-000 cA	-75-000-(1.1)	Conclusions These analyses show that smoking remains the leading cause of mor-
test: saperts	60.300 ch		tality. However, poor diet and physical inactivity may soon overtake tobacco as the
Notice yelfigilite	25/200 dt	421000 (1.8)	leading cause of death. These findings, along with escalating health care costs and
Visiting .			aging population, argue persuasively that the need to establish a more preventive on-
iniai behaitir	30,000 (%		entation in the US health care and public health systems has become more urgent.
Kit drug see	20200 (<1)	17:000-(0.7)	14M4_2014-2011/238-1246
(Auk	1 060 000 /5/3	1109/000/48.2	www.pita.com

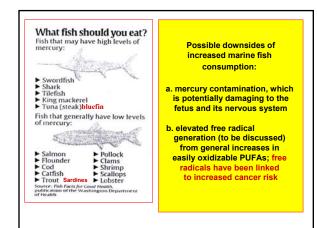
Common food oils ran			Eating fats, from l		highest.		
	5	Cholesterol	Saturated fat		saturated lat	Monounsi	
		(milligrams per fbsp.)		acid	Omega-3 fatty acid		
R	Canola oll	0	6%	Omega-6) 26%	10%	54	1%
6	Safflower oll	0	9	78	trace	13	í .
	Sunflower oll	0	11	69		20	5
(23)	Corn oll	0	13	61	1	25	
	Olive oll	0	14	8	1	77	
	Soybean oll	0	15	54	7	24	
PN 10	Peanut oll	0	18	34	22	48	š
C. B B	Cottonseed of	0 11	27	54		15	÷
Con-E	Lard	12	41	11	1	47	
EEEE CONTRACTOR	Palm oll	0	51	10		35	•
	Beef tallow	14	52	3	1	44	
	Butter	33	66	2	- 2	30	
200011111111111111	Palm kernel o	0 11	81	2*		- 11	(
	Coconut oil	0	92	2			5
11 2 21	elieved to be linole	in acid		were Linite	d States Day	arment of Ap	inne

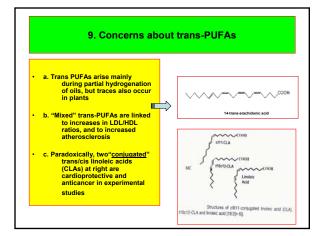








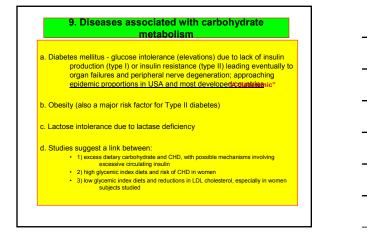




C. Dietary Carbohydrate (~4 kcal/g)

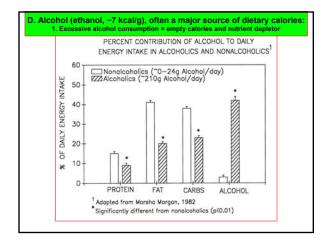
- Carbohydrate ranges from simple and refined sugars (mono- or disaccharides, often "disguised") to complex digestible amyloses and starches
- 2. Constitute as much as 250 g daily, supplying >50% of total calories for many people
- 3. Is a short-term energy source, not "essential" like PUFAs
- 4. Less than 50 g/day of complex carbohydrate is needed to suppress ketosis from fat metabolism and spare protein

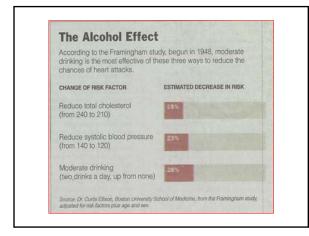
C. Dietary Carbohydrate, continued:


<u>Glycemic index</u> is the ratio of the area under the blood glucose curve produced by a specific carbohydrate-containing food compared to that produced by equivalent glucose or by plain old white bread

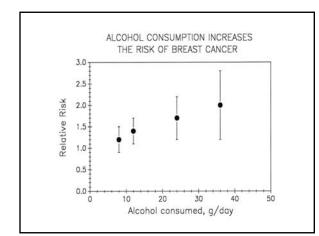

<u>Glycemic load</u> (probably more meaningful value overall) refers to the product of the glycemic index (qualitative measure) multiplied by the actual amount of carbohydrate in the portion of food under concern

<u>Insulinemic index</u> is the insulin response to a given glycemic load, being positively correlated with carbohydrate ingested


Food (one serving)	Carbohydrate content (in grams)	Glycemic Index* (percent expressed as decimal)	Glycemic Loan (rounded to nearest tenth)
Potato (1 baked)	37	1 21	45
Carrots (cup cooked)	8	1.31	10
Lentils (; cup cooked)	20	0.41	8
Dry beans () cup cooked)	27	0.60	16
White rice (cup cooked)	35	0.81	28
Wild rice (] cup cooked)	18	0.78	14
White bread (2 slices)	24	1.00	22
Whole grain bread (2 slices	24	0.64	15
Pasta (1 cup cooked)	40	0.71	28
Cheerios (1 cup)	22	1.06	23
All-Bran (1 cup)	24	0.60	14
Grape-Nuts (] cup)	47	0.96	45
Com flakes (1 cup)	26	1.19	31
Corn chips (1 oz)	15	1.05	16
Popcorn (air-popped, 1 cup)	5	0.79	4
* Standard reference for this t	able is white bre	ad.	
(Carbohydrate content and G Division of Preventive Medic School; "International Table: (1995): Vol. 62, 8715-935; and 2000), by Corinne T. Netzer J	ine, Brigham an of Glycemic In	d Women's Hospital, Ha dex," <i>American Journal</i> (rvard Medical of Clinical Nutritic



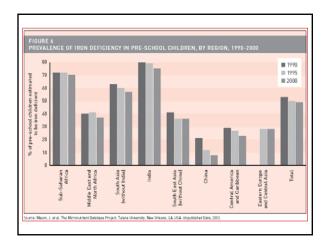
TO OCCUR			
2-4 Weeks	4-12 Weeks	12-26 Weeks	6 Months or Longer
folate	niacin	ascorbic acid	calcium
magnesium	nicotinamide	long- <u>life</u> proteins	copper
potassium	pantothenate		retinol
zine	phosphate		selenium
short-life proteins	pyridoxine		25-hydroxy D
	riboflavin		vitamin B ₁₂
	thiamine		vitamin E
	medium-life proteins		vitamin K



The softer side of ethanol: moderate* intake: a. correlates with a reduced risk of heart disease ("the French Paradox") b. is linked in some (but not all) studies to lower risks of stroke c. has been shown in several recent epidemiological studies to be associated with a reduced risk of dementia, including Alzheimer's

d. <u>BUT</u> still may increase risks of cancers of the breast, intestine, liver and larynx (interpretation complicated by smoking, poor diets)

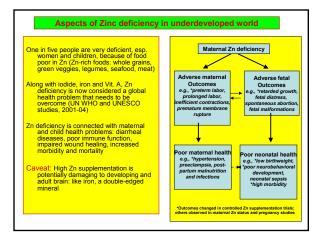
*definitions vary, but usually a maximum of 2 drinks/day for men and 1 for women (~15 g ethanol/drink), or 7-14 drinks a week (sorry, not all on a weekend night)

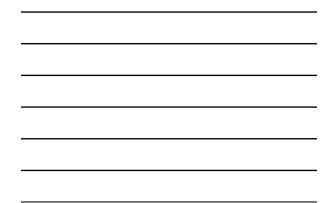


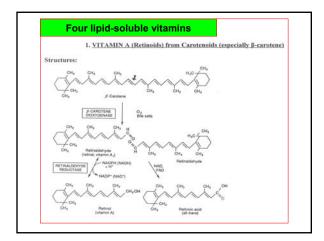
Miner	als	
-	DOLAGE	BENEFIT
Boron	500 mcg to 4 mg	Aids in bone health.
Calcium	500 to 1,500 mg	Crucial for women. Doctors routinely recommend 800 to 1,200 mg from daily supplement.
Chromium	50 to 300 mcg	Marketed aggressively as weight-loss agent. Helps body maintain normal glucose levels. Consult your physician before using higher doses (some practitioners recommend up to 600 mcg daily), especially if you are diabetic.
Copper	1 to 3 mg	Undernated mineral is reputed to improve heart health, promote fertility and maintain healthy skin. Be careful about higher doses: taking, say, 10 mg at one time can cause nausea and muscle pain.
tron	4 to 18 mg	Men and post-menopausal women should avoid iron sup- plement to avoid building potentially harmful surplus. Women with poor diet or expectant mothers should be in higher range.
Magnesium	100 to 400 mg	Protects against heart disease, heartbeat irregularity, diabetes, fatigue and muscle cramps. Best to take a combined calcium-magnesium because the two minerals work in balance to regulate body cells.
Potassium	20 to 100 mg	Can lower blood pressure but avoid if you have kidney troubles or take hypertension medication. Most of us get enough in food, including bananas, oranges and potatoes.
Selenium	20 to 400 mcg	An increasingly studied companion of vitamin E to prevent heart disease and cancer. Also helps protect eyes against catacits and macular dependation. Taking too much—900 mog considered best for prevention. Taking too much—900 mog daily or more—can cause serious side effects, including tatigue, har loss and depension.
Zinc	15 to 30 mg	Some natural health practitioners tout mineral as a common-cold stopper, not a consensus view among scientists. In any case, zinc is important for men targeting good prostate health.

Vitami		nal units i mge Millignams i moge Micrograms
-	-	
Witamin A	No more than 2,500 AU	Fat-soluble, vision-building vitamin A can build up surplus (the system, causing unwanted side affects.
Beta carotene	2,500 to 25,000 mg	Converts to vitamin A in the body as needed.
8-1/blanin	1.5 to 90 mg	Federal guideline is 1.5 mg but some nutrition practitioners consider 8 vitamins a vealaness in most Americane' dies. For instance, tritamin is most available in pork, legumes, rusts and fortiled consils. Promotes healthy nervous system
8-2/viboflavin	1.7 to 90 mg	If you lead a stressful life—raise your hands, everybody—consider taking at least 35 mg per day.
8-3/hiacin	20 to 100 mg	A recognized chelesterol fighter, but be cautious about tak- ing too much. It can cause skin flashing consult your doctor # you have diabetes, low blood pressure, gout or alcers.
8-S/pertolhenic acid	10 to 100 mg	Good for reducing stress. Look to take at least 50 mg daily.
84	2 to 50 mg	Helps prevent heart disease, big-time stressbuster (take 50 mg daily), recommended by some practitioners (100 mg therapeutic dosal for carpal-tunnel symptoms.
Polate, folic acid	200 to 1,000 mcg	If witamin fights cardiovascular problems, 600 daily mog is now considered a must before preprancy for women to prevent birth defects.
8-12	6 to 800 mcg	Has reputation as energy booster, especially as we age.
Notin	200 to 600 mcg	Lesser-Ancien II attamin helps the body use glucose more effectively (particularly important for diabetics) and promotes healthy nails and har.
Vitamin C	60 to 1,000 mg	The debate rages on whether regular C does can prevent colds. If you are a believer, 1,000 to 3,000 mg per day in split does (100 mg at a time) is a good strategy. Taking more than 2,000 mg can lead to digetile upart.
Vitamin D	400 to 800 fJ	Sunlight helps the body produce vitamin D. Milk is another good source. If you lack these two items in daily life, supplement is wise.
Vitamin E	200 no 800 AU	The private Council for Repossible Natrition estimates about 50 percent of cardiologist hemasilen take an E adquirement for here: health, Scientists are finding if can help aprevent Althorner's and cardiotic across. Neutrinary research suggests your strainers E product maybe need to be "full spectrum". Alcoloring gamme according to a tocontensis (sheck the lated) along with the more standard alpha societynews.
Vitamin K	25 to 300 mag	Adding leafy greens to your diet is enough vitamin K for most adults. Some-building formulations contain 300 mcg.

Dietary "Micro" minerals: a. <u>Iron</u> - indispensable, yet double-edged

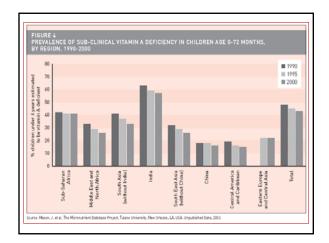

(1) Two forms of iron in diets:

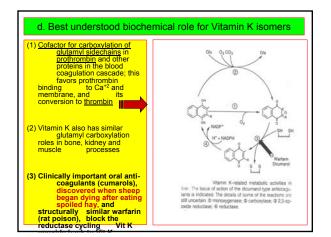

 a) 20-25% readily absorbed <u>heme iron</u> (1/2 comes from fish, meats)
 b) 75-80% <u>non-heme iron</u> in vegetables, legumes, etc., with absorption ranging from 2-20% depending on diet, body needs

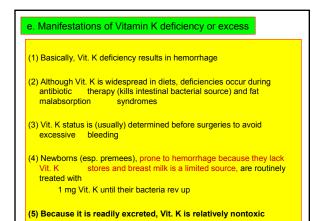

(2) Iron, a key component as a heme and non-heme constituent in many proteins, cytochromes, and lysosomal enzymes

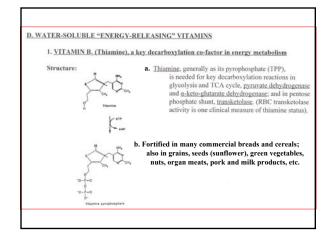
(3) Iron has a complex physiology, operating in a relatively closed system: relatively limited absorption and negligible loss (figure)

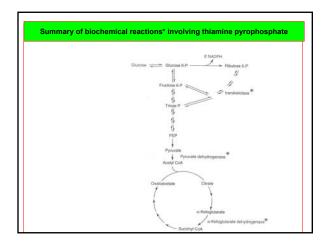
(4) Non-heme iron absorption is promoted significantly by vitamin C, which reduces ferric to ferrous ion, freeing it for mucosal uptake

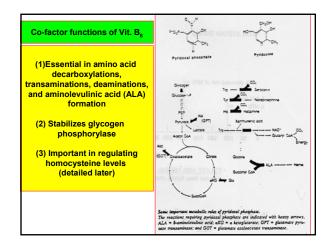




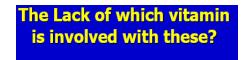






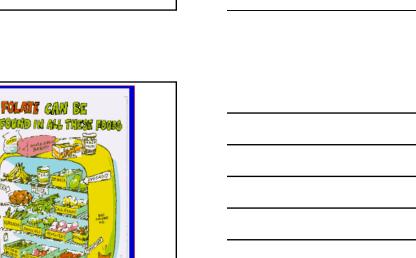


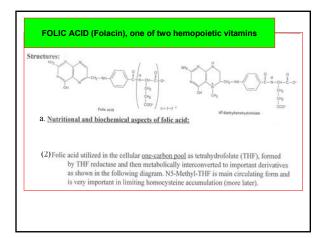
Hyperhomocysteinemia: Importance of vitamin B₁₂ in convergence with folate and vitamin B₆

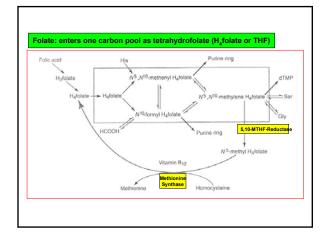

- Elevated plasma homocysteine is an independent risk factor for cardiovascular disease & stroke--So how do the vitamins converge?
- 2) Homocysteine promotes arteriosclerosis by as yet unclarified mechanisms. Recent evidences also link hyperhomocysteinemia to Alzheimers' dementia, pregnancy complications, inflammatory bowel disease, and increased risk of osteoporotic fractures.
- A common polymorphism sometimes involved: greatly increased homocysteine and increased risk of stroke in some individuals deficient in activity of 5-MeTHF-forming enzyme (5,10-MTHF reductase)
- Animal and human studies confirm that supplementation with vitamin B₁₂, folate and vitamin B₆ can reduce elevated homocysteine by promoting its metabolism
- Lowering an elevation in plasma homocysteine by 1 umole/L results in a 10% reduction in the risk of cardiovascular disease (JAMA 1995)

Niacin (B₃): Deficiencies or problems of excess

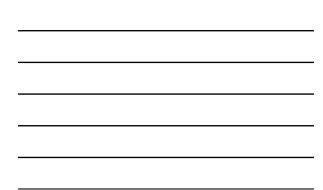
- Severe niacin deficiency leading to <u>Pellagra</u>, characterized by the <u>3</u> <u>D's</u> (dermatitis, diarrhea, and dementia, and often the 4th big one), is now rare in US because of public health measures (food fortification), but still a common test question
- Moderate niacin deficiency, leading to anorexia, muscle weakness, mucus membrane lesions and burning sensations, occurs frequently in elderly populations and alcoholics
- Large nicotinic acid doses can lower plasma lipids, but side effects can include flushing, hyperglycemia, and reversible liver dysfunction

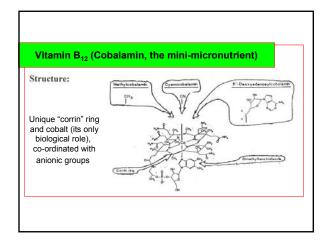


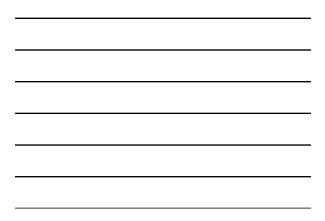


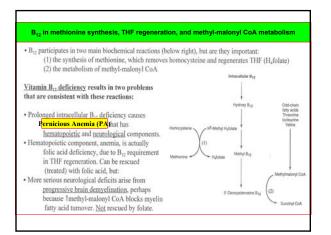


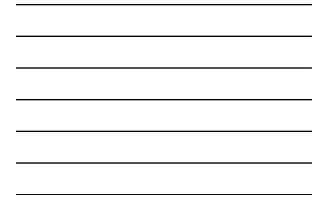
BY EATING THESE FOODS YOU WILL MAKE SURE YO HAVE A FOLATE RICH DUT

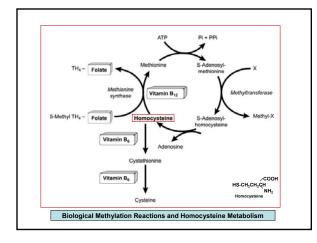


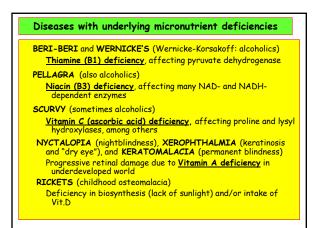





Fo	ic acid (folate) deficiency:
(1) prov	okes <u>hemolytic megaloblastic anemia</u> a) due to decreased synthesis of purines and deoxy-thymidylic acid (dTMP), which then blocks erythrocyte maturation and results in large ("macrocytic"), easily hemolyzed RBCs
	 b) underlies anemia in >40% of hospitalized alcoholics, but not only due to low dietary folate, but also to alcohol's inhibition of folate absorption, and (aggravated by liver disease) impaired folate activation, storage
(2) is a	major reason for <u>neural tube defects</u> —e.g., spina bifida and anencephaly so <u>folate supplementation throughout pregnancy</u> , with its already decreased folate absorption, is <i>muy importante</i> (fetal development, with rapid cell division, needs folate)
(3) is as	sociated with increased risk of cancer of the colon, possibly through chromosome breaks, and with childhood neuroblastoma
(4) may	increase the risk of ischemic stroke, since new studies show that folate intake (and also vit. B_{12} intake) is associated with a reduction in this risk


(5) is linked along with vit. B_6 and vit. B_{12} to hyperhomocysteinemia





TWO VITAMIN CO-FACTORS FOR DECARBOXYLATIONS

<u>Thiamine</u> (B1) in pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched chain ketoacid dehydrogenase (<u>all a-keto acid decarboxylations</u>)

<u>Pyridoxal Phosphate</u> (B6) in DOPA-, histidine-, glutamate-, cysteine ulfinate- and phosphatidyl serine-decarboxylases

TWO VITAMIN CO-FACTORS FOR CARBOXYLATIONS

<u>Vitamin K</u> in vit. K-dependent carboxylases in blood-clotting cascade and bone

<u>Biotin</u> in four different ATP-dependent carboxylases (pyruvate carboxylase is a recognizable one from gluconeogenesis)

NUTRIENT DEFICIENCIES THAT CAN LEAD TO ANEMIAS

<u> Iron – microcytic hypochromic anemia</u>

Zinc and Copper - basically iron-deficient anemia: zinc is needed in protein metallothionin, which is involved in copper absorption, and copper is a component in ferroxidase [ceruloplasmin], a protein required for iron absorption

<u>Vitamin A</u> - also an iron-deficient anemia: Vit. A is needed for the synthesis of transferrin

<u>Riboflavin (B2)</u> – rare deficiencies can promote anemia: possibly due to impairment of iron metabolism and hemoglobin synthesis

<u>Folate - hemolytic megaloblastic anemia</u>

<u>Vitamin B12</u> - same as folate: B12 is required to regenerate active tetrahydrofolate for one-carbon pool metabolism and DNA synthesis

<u>Vitamin E</u> - severe deficiency (very rare) can precipitate hemolysis and a resultant normocytic anemia

DEFICIENT NUTRIENT SOME	E HEALTH PROBLEMS WHEN SEVERE OR CHRONIC
"Micronutrient" minerals:	TRANSFERS WHEN SCIENC ON CONVINC
Calcium	Osteoporosis; muscle & bone pain
Magnesium	Heart arrhythmia; nerve excitability
Iron (I" of world's 3 top deficiencies)	Anemia; susceptibility to infections
Iodide (2" of " " " ")	Increased infant mortality; cretinism; goiter
Zinc	Impaired wound healing; reduced immunocompetence
Copper	Aartic rupture (collagen lack); brain lesions; anemia
Selenium	Muscle wasting; heart disease
"Micronutrient" vitamins, lipid-soluble:	
Vitamin A retinoids (3" of world's top 3)	Increased infant mortality; nightblindness
Vitamin E (tocopherals)	Vascular leakage; impaired immune & nerve function
Vitamin D (calciferals)	Hypocalcemia; rickets; osteomalacia
Vitamin K (phylloquinone)	Hemorrhogel
"Micronutrient" vitamins, water-soluble;	
Thiamine (B-1)	Beri-beri: Wernicke's syndrome
Riboflavin (B-2)	Skin lesions; ocular problems
Niocin (B-3)	Pellegna
Pyridoxine (B-6)	Seizures (kids): dermatitis
Folic acid	Neural tube defects (infants); anemia
Cabalamin (B-12)	"Pernicious" anemia (anemia as above, along with irreversible brain myelin loss-
Ascarbic acid (vitamin C)	Scurvy; connective tissue problems
"Macronutrients"	
Protein (major problem in 3 rd World)	Protein-energy malnutrition; impaired immune function; kwashiorkorl
Lipids (specifically, essential fatty acids)	Impaired brain development; skin rashes
Fiber	Increased risk of hypertension, cancer, heart prob.

	WE HEALTH PROBLEMS WHEN SEVERE OR CHRONIC
Sodium	Increased hypertension risk
Iron	Hemochromatosis; increased free radical damage?
Fluoride	Fluorosis (mottled, weakened teeth)
Zinc	Can cause iron and copper deficiencies
Copper	Brain degeneration (as in Wilson's disease)
Cobalt	Congestive heart failure (cobalt-spiked beer story)
Manganese	Brain degeneration (especially parkinsonism)
Selenium	Cirrhosis; muscle weakness; increased cancer risk (?)
Vitamin A	Teratogenic (fetal malform.), and liver toxicity
Vitamin D	Hypercalcemia; weakness; diarrhea; confusion
Saturated lipids	Hypertriglyceridemia; obesity; atherosclerosis
Essential fatty acids (unsaturated fats	
Protein	Kidney problems; calcium losses
Simple carbs (sucrose, glucose)	Some risk of insulin resistance; diabetes; obesity

Summary of dietary antioxidant defenses: nutrients making significant contributions

- •Vitamin E in membranes and lipid phases •Vitamin C in aqueous phases of compartments
- +Vitamin A and carotenoids, particularly $\boldsymbol{\beta}$ -carotene
- ·Vitamin B2 (riboflavin) as cofactor in glutathione reductase
- •Selenium, cofactor required for activity of glutathione peroxidase
- •Manganese and copper, cofactors required for superoxide dismutases •Many plant phenolic derivatives and phytochemicals, particularly flavonoids
- Iron, as a heme constituent in catalase and peroxidases

Solution Note of caution from the National Academy Institute of Medicine: Although many lab experiments indicate the importance of dietary antioxidants, evidence from human studies that supplements actually decrease mortality rates from chronic diseases is still very limited.

Cancer site	Proportion of Studies with Statistically Significant Protective Effect of Fruits and/or Vegetables*	Percent of Studies with Protective Effect
Lannx	6/6	100
Stomach	28/30	93
Mouth, oral cavity, and pharynx	13/15	87
Bladder	6/7	86
Lung	11/13	85
Esophagus	15/18	83
Pancreas	9/11	82
Corvix	4/5	80
Endometrium	4/5	80
Rectum	8/10	80
Colon	15/19	79
Colon/rectum	3/5	60
Breast	8/12	67
Thyroid	3/5	60
Kidney	3/5	60
Prostate	1/6	17
Nasal and nasopharynx	2/4	-*
Ovary	3/4	-
Skin	2/2	-
Vuha	1/1	-
Mesotheijum	0/1	-
TOTAL	144/183	79

Nutrition in biological and physiological function-I Reading assignment: Devlin 5th Ed., pp. 1053-63; pp. 1117-35; Boron & Boulpaep, pp. 1224-25

Lecture 83: Monday April 11th, 8:30-9:30 am

Learning Objectives:

- Understand the relation of essential amino acid content to the biological value of protein, and how combining "deficient" proteins is nutritionally acceptable. · Explain positive and negative nitrogen balance and conditions under which they occur
- Define marasmus and kwashiorkor as components of PEM, and the effects of coexisting micronutrient and infections in susceptible infants and children. Understand the structural differences between saturated, mono-unsaturated and •
- poly-unsaturated (PUFA) dietary fatty acids and food oils from which they are derived.
- Be familiar with the role of arachidonic acid in forming cell-specific eicosanoid messengers---particularly prostaglandins, thromboxane and leukotrienes.
- Explain the structural difference between n-6 and n-3 PUFA and in general why they are essential in human nutrition,
- Clarify the importance of increased n-3 PUFA intake and the predominant dietary sources.
- Define glycemic index and glycemic load, and relate them to the question of low carbohydrate diets and insulin in weight loss and preventive health. •

Nutrition in biological and physiological function-II Reading assignment: Devlin 5th Ed., pp. 1053-63; pp. 1117-35; Boron & Boulpaep, pp. 1224-25

Lecture 84: Monday April 11th, 9:30-10:30 am

Learning Objectives:

- Know the effects of chronic alcohol abuse on nutrient absorption and utilization. Detail major health risks of chronic alcohol abuse that you will almost certainly see in your respective practices.
- Describe the nature of dietary fibers, and the nutritional benefits of their increased consumption in balanced diets.
- Understand how environmental causes such as poor diets can overlap in some instances with genetics, as exemplified by leptin, to increase obesity risk.
- Explain the dietary significance of the food pyramids for healthy nutrition, pointing out the differences between them.
- Identify key reactive oxygen and nitrogen species involved in oxidative stress, and the cellular proteins/peptides that sustain antioxidative cytoprotection.
 Be familiar with how micronutrients (retinoids, vit. E and C; copper, manganese and selenium) are important for functioning of the above antioxidant proteins.
 Understand the functions of ferritin and transferrin in cellular iron regulation, and the pelo e firm in cellular another interballions.
- the role of iron in cellular energy metabolism. Describe potential deleterious effects of excess iron absorption.

Nutrition in biological and physiological function-III Reading assignment: Devlin 5th Ed., pp. 1047-49; pp. 1137-68; Boron & Boulpaep, pp. 1226-27

Lecture 85: Tuesday April 12th, 8:30-9:30 am Learning Objectives:

- Explain the relationship of dietary carotenoids to retinoids, and the roles of retinoids in normal physiology.
 Describe the two forms of vitamin K, and the specific role of vit. K in blood clotting.
 Identify the specific functions of thiamine in energy metabolism.
 Describe and define the progressive outcome of thiamine deficiency in chronic alcoholism.

- Identify pellagra's clinical signs and the nutritional deficiency that underlies it.

- Identify pellagra's clinical signs and the nutritional deficiency that underlies it.
 Explain the relationship between folic acid and neural tube defects, describing the vitamin's role in the one carbon pool and DNA synthesis.
 Clarify the pernicicus part of pernicious anemia, and the essentiality of vitamin B12 in the prevention of the disease.
 Describe the significance of hyperhomocysteinemia, and the biochemical roles of vitamins B6 and B12 and folic acid in countering the condition.
 Explain how a biochemical function of Vitamin C is critical for preventing scurvy.
 Describe the cellular antioxidant relationship between Vitamin C and Vitamin E.
 Summarize the nutritional components of a diet high in vegetables, fruits, marine fish and whole grains (and some green tea) that are important in reducing risks of heart disease, stroke and cancers.