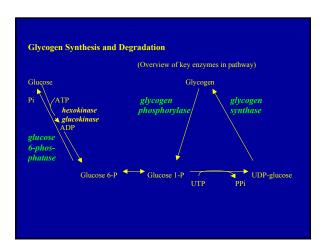
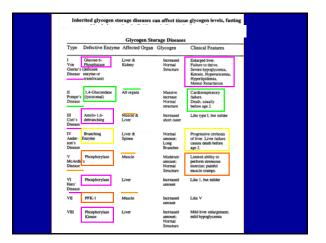


Galactosemia						
Galactokinase Deficiency	Classical Galactosemia Galactose 1-P Uridyl- Transferase Deficiency					
Elevated galactitol Cataracts	Elevated galactitol Cataracts					
Galactosemia	Galactosemia					
Galactosuria	Galactosuria					
Treatment: Eliminate galactose/ Lactose MILK	Elevated Galactose 1-P Hepatic Dysfunction Brain Dysfunction (Retardation) Cataracts Autosomal recessive					

HEREDITARY FRUCIOSE INIOLERANCE A Deficiency of Adolase B Symptoms Hypoglycenia Voniting Jaundice Hepatic failure Treatment: Decrease fructose/sucrose



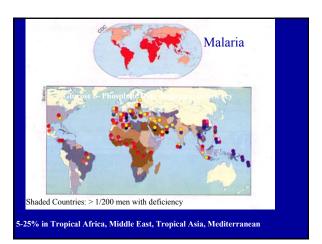

Ethanol metabolism can cause hypoglycemia; the high NADH opposes gluconeogenesis

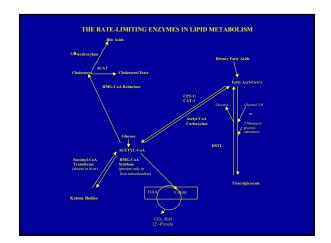
Ethanol metabolism increases NADH

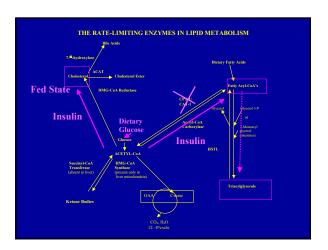
Increased NADH promotes the conversion of two glucogenic precursors (pyruvate and oxaloacetate) to lactate and malate.

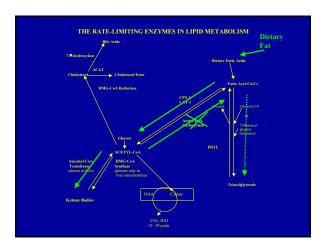
This removes pyruvate and oxaloacetate from the pool of glucogenic precursors.

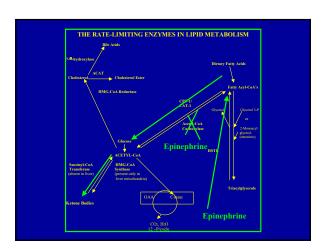
Pentose Phosphate Pathway (Hexose Monophosphate Shunt)

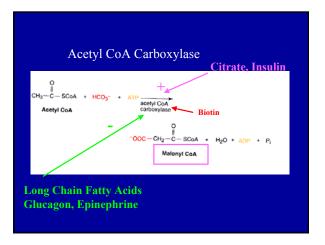

Generates:

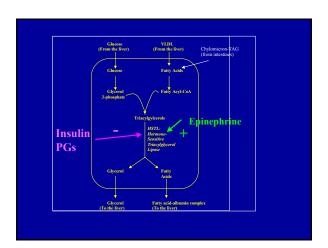

NADPH – Lipid Biosynthesis

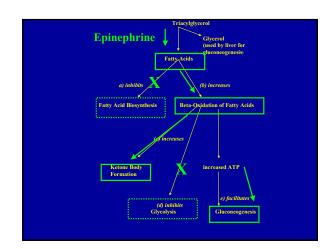

Ribose 5-Phosphate – Purine Biosynthesis – e.g., DNA, RNA, CoA

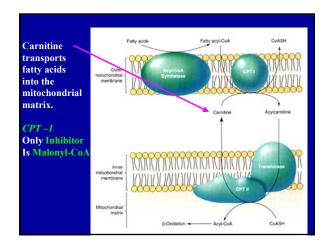

A Genetic *Deficiency* of Glucose 6-Phosphate Dehydrogenase is Associated with Drug-Induced *Hemolytic Anemia*.

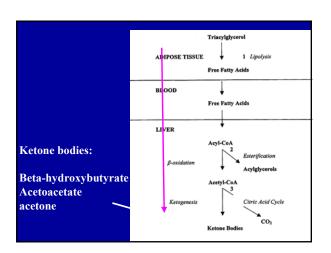

-	
-	

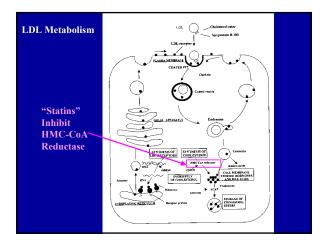


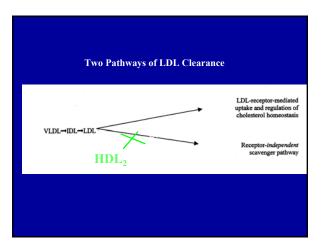


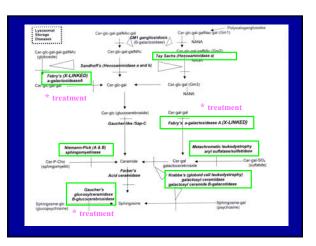


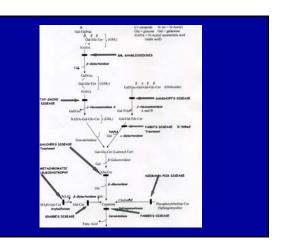




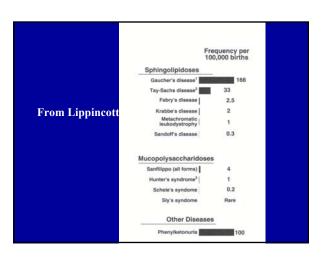




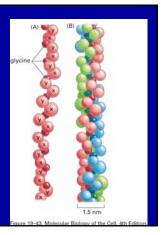




Chemical Composition of Plasma Lipoprotein Class Percent Composition of Lipid Fraction Lipoprotein Class % Lipid HDL 20-35 3-5 12 3-4 LDL 20-25 75-80 15-20 35-40 7-10 7-10 IDL LDL Precursor 15-20 80-85 22 22 30 Transports Endogenous Fat VLDL 5-10 90-95 15-20 10-15 5-10 50-65 Transports Exogenous (Dietary) Fa 7-9 84-89

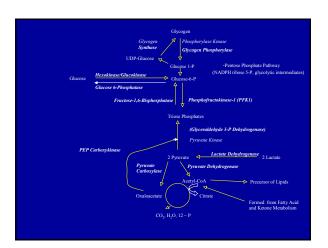


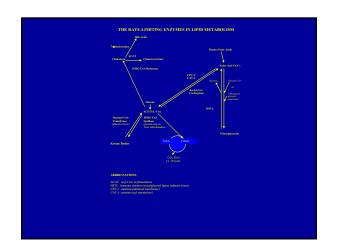
HDL is involved with reverse cholesterol transport



Disease	Storage Diseases/Sphingolipi Enzyme Deficiency	Accumulating Product	Results/Characteristics autosomal recessive unless otherwise noted]
Fabry's	alpha-galactocerebrosidase Alpha-galctosidase A	A Ceramide Trihexoside	X-linked recessive: renal failure Enzyme Replacement Therapy
Krabbe's	galactosylceramide B-galact sdase, Galactosyl ceramidase	o- galactocerebroside (brain)	optic atrophy, spasticity, early death
Gaucher's	B-glucocerebrosidase Glucocosylceramidase	glucocerebroside (brain, liver, spleen,	"crinkled paper" enlarged cytoplasm Enzyme Replacement Therapy
		bone marrow)	liver and spieen enlargement mental retardation in infantile form only
Niemann- Pick	sphingomyelinase	sphingomyelin & cholesterol (reticuloendothelial & parenchymal cells)	Death by age 3, enlarged liver & spleen mental retardation
Tay-Sachs	Hexosaminidase A	GM2 ganglioside	Death by age 3, cherry-red spot on macula Carrier rate: 1/30 Jews of European descent 1/300 for others), mental retardation, blindness
	atic arylsulfatase A ophy sulfatidase (bra	sulfatide in, kidney, liver, peripheral nerves)	white matter signs, peripheral neuropathy mental retardation, demyelination, Nerves stain yellowish brown with cresyl violet
Farber's	Acid ceramidase	ceramide	Painful and progressively deformed joints Subcutaneous nodules, ganulomas, fatal early
Mucopolys	saccharidoses - Most Common	Forms	
Hurler's	a-L-iduronidase		comeal clouding, mental retardation
Hunter's	iduronate sulfatase		Mild form of Hurler's with no corneal clouding X-linked recessive

Type 1 Collagen


Triple-stranded Gly-X-Y repeat Glycine – smallest aa Proline – polyproline helix OH-pro, OH-lys H-bonding Lysine aldehydes cross-linking


Disorder	Collagen synthesis	Clinical Manifestations			
Osteogenesis Imperfecta 1	Decreased synthesis of type 1 collagen	susceptibility to fractures sometimes confused with child a blue sclerae - translucent			
Autosomal Do dominant ne	minant – may act like gative	connective tissue over choroid			
Osteogenesis Imperfecta 2	Point mutations & re- arrangement of exons in triple helical regions	Perinatal death; soft, fragile & malformed bones			
Autosomal Do	1				
Ehlers-	Faulty collagen synthesis	Hyperextensive skin,			
Danlos		hypermobility of joints, tendency to bleed			

Fibrillin is essential to the integrity of elastin

Marfan's Syndrome mutation in the fibrillin gene

		Allosteric	T Hormonal	[Hormonal	Induces	Comments
Enzyme	Allosteric Activator	Inhibitor	Activator .	Hormonal Inhibitor	Induces Enzyme Synthesis	
Texokinase -outside liver		Glu 6-P		-		Low Km for glucose
Glucokinase -liver		Fruc 6-P			Insulin	High Km for glucose
Phosphofructokinase-1, liver	F-2,6-bisP, AMP, ADP	ATP Citrate		Glucagon Epinephrine	Insulin	Glucagon & Epinephrine Inhibit PFK-2, which leads to A decrease in F-2,6-bisP (the Activator)
Phosphofructokinase-1, muscle	F-2,6-bisP AMP, ADP	ATP Citrate	Epinephrine		7	Epinophrine activates PFK-2, which leads to an increase in F-2,6-bisP
Pyruvate Kinase –liver	F-1,6-bisP	Alanine		Glucagon - Epinephrine	Insulin	
Pyruvate Carboxylase – liver	Acetyl CoA					Requires Biotin
PEP Carboxykinase - liver					Glucagon Epinephrine	Requires GTP hydrolysis
Fructose-1,6-bisphosphatase - liver		F-2,6-bisP AMP	Glucagon Epinephrine		Glucagon Epinephrine	Glucagon & Epinephrine Inhibit PFK-2, which leads to A decrease in F-2,6-bisP (the Inhibitor)
Glucose 6-phosphatase -liver					Glucagon Epinephrine	,
Glycogen Synthase -liver	Glucose 6- P		Insulin	Glucagon Epinephrine	-	Glucagon & Epi can inhibit Via CAMP system (PKA), Epi can Also inhibit via IP3/DAG (PKC) Ca ^{2*} can inhibit via Ca-dep PK
Phosphorylase Kinase -liver	Ca2+		Glucagon Epinephrine			Calmodulin is a subunit. Ca ² binding directly activates
Glycogen Phosphorylase -liver	AMP	ATP	Glucagon Epinephrine	lasulin		Glucagon & Epi can activate Via CAMP system (PKA); Epi can Also activate via IP3/DAG (PKC) Ca ² can activate via Ca-dep PK
Glucose 6-P Dehydrogenase	NADP*	NADPH			Insulin	
Pyruvate Dehydrogenase		Acetyl CoA NADH				Acetyl-CoA, NADH, & ATP Promote phospherylation and inhibition. Pyruvate inhibits phosphorylation > activation In adipose tissue, Insulin promotes dephosphorylation > activation.

Regulation of Key Enzymes of Lipid Metabolism

Enzyme	Activator	Inhibitor	Hormonal Activator	Hormonal Inhibitor	Induces Enzyme Synthesis	Represses Enzyme Synthesis	Comments
Acetyl CoA -liver Carboxylase	Citrate	Long Chain FattyAcylCoA AMP	Insulin	Glucagon Epinephrine	HighCarbDiet. Fat Free Diet	Glucagon, (Epi) High Fat Diet Fasting	Requires Biotin Synthesizes Malonyl -CoA, The Inhibitor of CPT-1
Carnitine Palmitoyl Transferase –1 - liver		Malonyl CoA					
Hormone Sensitive Triacylglycerol Lipase – Adipose Tissue			ACTH	Insulin PGE			
Mitochondrial HMG-CoA Synthase - Liver							
Acetoscetate: Succinyl-CoA CoA Transferase – not liver							
IBMG-CoA Reductase - liver		Cholesterol AMP Mevalonate	Insulin	Glucagon			Inhibited by drugs such as Lovastatin, mevantatin, etc. Effectiveness of drugs is Dependent on presence of Functional LDL receptors in the liver.
7 –alpha hydroxylase - liver	Cholesterol					,	
ACAT	Cholesterol						
Lipoprotein Lipase – endothelial	Apo CII						

Note: The regulation of these enzymes in specific tissues in noted. However, many of these pathways take place in several tissues (thirty acid synthesis, firty acid studies), ketters utilization, chelostered biosynthesis. Kentens are made only in the liver mixed-hondris and days are not utilized in the liver. Other acids are made only in the liver. ISST Upper in a subject times enzyme. Lipoprotein lipsue is frond in the capillar quadelestiman dis northwestly an approved inc. Crist) found on several lipoproteins.