expensive anti-EGFR, antibody therapy to the sub-
group of patients with wild-type K-ras colorectal
cancers will save millions of dollars that would
otherwise have been spent on patients who had
no chance of benefit.
Finally, lest the field of EGFR biology become
carried away with the success of K-ras as a molec-
ular marker, it should be noted that the differ-
ence in survival between the groups of patients
identified by K-ras testing is small. The response
rate with cetuximab treatment among patients with
wild-type K-ras tumors remains less than
15%, with only a modest overall survival benefit
over those given best supportive care alone (me-
dian survival, 9.5 months with cetuximab vs. 4.8
months with best supportive care alone). There
was no effect of cetuximab on median survival
among patients with mutated K-ras tumors (4.5
months with cetuximab vs. 4.6 months with best
supportive care alone). Although the 5-month im-
provement in median survival among the patients
with wild type K-ras tumors who were treated with
cetuximab generates excitement among oncol-
gists, who are accustomed to such marginal im-
provements, the reaction among patients with
colorectal cancer and other persons in the gen-
eral population may be more muted. In fact, in
countries that include an analysis of cost-effec-
tiveness as part of the approval process, EGFR-
targeting antibodies are frequently not approved,
owing to a marginal benefit at high cost. Perhaps
further molecular analysis will yield other mark-
ers that will identify patients who benefit from
EGFR-targeting antibodies and will point to other
targets and combination strategies needed to over-
come drug resistance.

Dr. Messersmith reports being the recipient of an Amgen
Oncology Institute Career Development Award. No other poten-
tial conflict of interest relevant to this article was reported.

From the Division of Medical Oncology, Gastrointestinal Med-
ical Oncology Program, University of Colorado Cancer Center,
Aurora (W.A.M.); and the Denver Department of Veterans Af-
fairs Medical Center and the University of Colorado Denver
School of Medicine, Denver (D.J.A.).

2. Meyerhardt JA, Mayer RJ. Systemic therapy for colorectal
tions and benefit from cetuximab in advanced colorectal cancer.
receptor antagonists in the biology and treatment of cancer.
trial of panitumumab plus best supportive care compared with
best supportive care alone in patients with chemotherapy-refrac-
for the treatment of colorectal cancer. N Engl J Med 2007;357:
2040-8.
7. Malumbres M, Barbacid M. Ras oncogenes: the first 30
8. Andreyev HJ, Norman AR, Cunningham D, Oates JR, Clarke
PA. Kirsten ras mutations in patients with colorectal cancer: the
9. Van Cutsem E, Lang I, D’haens G, et al. KRAS status and
efficacy in the first-line treatment of patients with metastatic
colorectal cancer (mCRC) treated with FOLFIRI with or without
cetuximab: the CRYSTAL experience. J Clin Oncol 2008;26:
Suppl;5s. abstract.
10. Bokemeyer C, Bondarenko I, Hartmann JT, et al. KRAS sta-
tus and efficacy of first-line treatment of patients with meta-
static colorectal cancer (mCRC) with FOLFOX with or without
cetuximab: the OPUS experience. J Clin Oncol 2008;26;Suppl:
178s. abstract.
11. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is re-
quired for panitumumab efficacy in patients with metastatic
12. Cunningham D, Humbert Y, Siena S, et al. Cetuximab mono-
therapy and cetuximab plus irinotecan in irinotecan-refractory
13. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activ-
ity in colorectal cancer patients with tumors that do not express
the epidermal growth factor receptor by immunohistochemis-
14. Fearon ER, Vogelstein B. A genetic model for colorectal tu-

Copyright © 2008 Massachusetts Medical Society.

TLR Polymorphisms and the Risk of Invasive Fungal Infections
Eric G. Pamer, M.D.

Allogeneic hematopoietic stem-cell transplanta-
tion is a potentially lifesaving cancer therapy that,
at least temporarily, renders patients highly im-
munocompromised and vulnerable to infection.
Aspergillus fumigatus, a common environmental fun-
gus that causes invasive infections in immuno-
compromised persons, is particularly problematic
in patients who have undergone this treatment. Although the risk of the development of asper-
gillosis correlates with the degree of immuno-
 suppression and the intensity of exposure to fun-
gal spores, these factors alone do not explain why
this infection develops in approximately 5 to 10%
of patients who have received these transplants,
whereas it does not develop in the remaining 90 to 95% of patients. A study reported by Bochud and colleagues in this issue of the Journal begins to shed light on additional risk factors by correlating innate immune-receptor polymorphisms with the risk of the development of invasive aspergillosis after allogeneic hematopoietic stem-cell transplantation.

Innate immune receptors are expressed on or within mammalian cells and, on binding to microbial molecules, induce the expression of factors that restrict microbial tissue invasion and enhance microbial killing. The most extensively investigated innate immune receptors are the Toll-like receptors (TLRs). Toll, a protein first described in Drosophila melanogaster as a regulator of development in flies, was subsequently discovered to mediate an innate immune defense against fungal infection in fruit flies by inducing production of the antimicrobial peptide drosomycin. A long hunt for innate immune receptors in mammals led to the discovery of TLR4, the receptor that detects lipopolysaccharide, a component of gram-negative bacteria that causes septic shock. Humans harbor 10 genes encoding TLRs, each with distinct specificities that extend from microbial glycolipids and lipoproteins to nucleic acids and bacterial flagellins.

Studies in mice show increased susceptibility to infection when TLR signaling is impaired, and mutations in genes encoding TLRs or downstream signaling proteins increase the risk of infection among humans. For example, a common mutation resulting in a deficiency of TLR5, a receptor that responds to bacterial flagellin, is associated with increased susceptibility to Legionella pneumophila infection. Point mutations in TLR2, which responds to microbial glycolipids and lipoproteins, have been associated with a higher risk of the development of lepromatous than of tuberculoid leprosy. Associations between TLR1 and TLR6 polymorphisms and the development of invasive aspergillosis in patients who have received allogeneic hematopoietic stem-cell transplants have also been reported.

TLR4 variants have been described in humans, and two mutations within the coding region of the TLR4 gene decrease responsiveness to lipopolysaccharides. The study by Bochud et al. involving patients who received allogeneic hematopoietic stem-cell transplants shows that stem-cell transplants from donors expressing the hyporesponsive TLR4 variant render recipients more susceptible to invasive aspergillosis.

The authors first investigated 336 patients who underwent allogeneic hematopoietic stem-cell transplantation from unrelated donors between 1995 and 2003, a period that extends from the “old era” (when amphotericin B was the major therapeutic option for invasive mold infections) to the “new era” of less toxic antifungal azoles and echinocandins. Proven or probable invasive aspergillosis was diagnosed in 33 patients.

Single-nucleotide polymorphisms (SNPs) in four TLR genes (TLR2, TLR3, TLR4, and TLR9) were characterized in transplant recipients and donors; one haplotype, referred to as S4 by the authors, was found to be associated with an increased risk of invasive aspergillosis. The S4 haplotype is defined by four SNPs within or near the TLR4 gene, two of which change the amino acid sequence of TLR4 to the lipopolysaccharide-hyporesponsive form. The association of the S4 haplotype with invasive aspergillosis was confirmed in a validation study that compared 103 case patients who had invasive aspergillosis with 263 control patients.

The association of the S4 haplotype with invasive aspergillosis was significant only in recipients of unrelated allografts, who presumably required greater immunosuppressive therapy to prevent graft-versus-host disease; this suggests that the “susceptibility phenotype” may be apparent only in patients with more profound degrees of general immunosuppression. Furthermore, the S4 haplotype of the donor, but not the recipient, was associated with invasive aspergillosis, indicating that TLR function in bone marrow–derived cells — perhaps in neutrophils, monocytes, macrophages, or dendritic cells — is critical. The authors found that cytomegalovirus (CMV) infection independently increases the risk of invasive aspergillosis, and they found that transplant recipients receiving non–S4 haplotype grafts in the absence of CMV infection have a very low risk of the development of invasive aspergillosis — a finding that may allow for more focused use of prophylactic antifungal agents after allogeneic hematopoietic stem-cell transplantation.

The finding that TLR4 mutations affect susceptibility to A. fumigatus infection might be considered surprising, since this receptor is involved principally in the response to bacterial lipopolysaccharides. Since A. fumigatus does not produce
lipopolysaccharides, TLR4 may bind other, non-lipopolysaccharide molecules produced by this fungus. Experiments in mice showing that inflammatory responses to \textit{A. fumigatus} are, in part, mediated by TLR4 provide support for this finding.12 An \textit{A. fumigatus}–derived ligand for TLR4 has not been identified, however.

TLR-mediated activation of innate immune effector cells (e.g., macrophages, granulocytes, or dendritic cells) provides a direct mechanism to inactivate pathogenic microbes.3 An alternative indirect mechanism for a TLR-mediated defense against invasive infections has been suggested by recent studies of innate immune responses to microbial colonization of mucosal surfaces. Commensal bacteria inhabiting the intestine, for example, stimulate TLRs, including TLR4, and induce the expression of antimicrobial molecules by epithelial cells.13,14 Thus, even in the absence of overt infection, the innate immune system in mammals actively responds to colonizing bacteria and establishes an “innate immune tone” that fortifies mucosal barriers and restricts microbial invasion.

Can differences in the sensitivity of TLRs for their respective ligands affect the innate immune tone? Circulating levels of acute-phase reactants in persons expressing TLR4 variants suggest that the basal innate immune tone correlates with TLR sensitivity to lipopolysaccharides.15 So, an alternative explanation for the finding of Bochud et al.2 is that persons receiving stem cells that express the high-affinity TLR4 variant have an elevated innate immune tone that, more generally, increases resistance to infection. Determining how TLR polymorphisms influence a defense against pathogens will make for an exciting scientific journey that may, in time, result in new strategies to treat or prevent microbial infections.

No potential conflict of interest relevant to this article was reported.

From Memorial Sloan-Kettering Cancer Center, New York.

Multiple Lessons for Multiple Sclerosis

Stephen L. Hauser, M.D.

Multiple sclerosis is a cruel disease. It strikes young adults, runs a chronic, unpredictable course, and is eventually disabling for many patients.1 Both inherited and environmental factors influence the risk and course of the disease.2 Multiple sclerosis is one of the great unsolved mysteries in modern medicine, with a number of striking epidemiologic features, including an increasing global frequency, an inverse relationship between serum 25-hydroxy-vitamin D levels and disease risk, and a tantalizing association with Epstein–Barr virus infection. Multiple sclerosis usually begins as a relapsing--