Learning Objectives: You should be able to:
  - Trace the pathways molecules of oxygen and carbon dioxide
    must traverse as pulmonary capillary blood become arterialized.
  
 - Contrast the diffusion constant for any gas versus
    diffusing capacity of the lung in mathematical terms of Fick's law of
    diffusion.
  
 - Plot as a function of time the change in blood P02
    and PCO2 as venous blood flows through the lungs.
  
 - List and explain four different causes of arterial
    hypoxemia found in abnormal human pathophysiology.
 
Rhoades & Tanner Text Readings: Chapter 21, Pages 386-391,
395-398
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu
 
Diffusion Pathway
  - Diffusion
    
      - passive diffusion and catalytic action of carbonic
        anhydrase
      
 - facilitated diffusion (cytochrome P-450 fixed site O2
        and CO carrier)
    
 
     
  
 - Respiratory Membrane and Barriers to Diffusion 
    
 
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu
 
 
Diffusing Capacity of the Lung
  - Gas Fluxes Across a Resistive Barrier
    
      
        gas = 
        Pgas * (1 / R)
      
        gas = 
        Pgas * G
      - where:
        
          
            = diffusive gas flow (mL/min)
          - R = resistance to diffusive gas flow (mm Hg/[mL/min])
          
 - G = conductance to diffusive gas flow ([mL/min]/mm
            Hg)
          
 
P
            = (PP1gas - PP2gas) pressure gradient (mm Hg)
          - PP1 & PP2 = partial pressures of given gas
            species on either side of membrane
        
 
     
     
  
 - Expansion of Fick's Law
    
      
        gas = 
        Pgas * G
      
        gas = 
        Pgas * DL gas
      
        gas = 
        Pgas * (areamem/thicknessmem) * Dgas
      
        gas = 
        Pgas * (areamem/thicknessmem) * (sol.gas/
        mol. weightgas)
        
          - DL gas = diffusing capacity of the lung
            to the gas
          
 - Dgas = diffusion constant for the gas
        
 
    
     
  
 - Factors Favoring High Gas Conductance (DL gas)
    
      - gaseous phase (1/ mol. weightgas)
        
          - low molecular weight of gas
          
 - short diffusion path in gaseous phase
        
 
       - respiratory membrane phase (areamem/thicknessmem)
        
          - thin membrane (t = 0.2-1.0 µm)
          
 - large gas exchange area (A = 70 m2 = 750
            feet2)
          
 - high lipid solubility of gas
        
 
       - aqueous phase (sol.gas)
        
          - high fluid solubility
          
 - fast reaction rate with hemoglobin
          
 - small pulmonary capillary diameter (8 µm)
          
 - large red blood cell diameter (5-8 µm)
        
 
     
 
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu
 
 
Alveolar Gas Partial Pressure
1. Dalton's Law of Partial Pressures 

  - Ptotal = P1 + P2 + P3
    for a three-gas mixture
  
 - P3/Ptotal = %P3 present in
    total gas mixture
  
 - Ptotal = Patm for dry air (e.g.
    atmosphere)
  
 - Ptotal = Patm - PH2O for
    100% humidified air (e.g. trachea)
  
 - PH2O = 47 mm Hg at 37°C
  
 - atmospheric %O2 = 20.9%
  
 - atmospheric %CO2 = 0.03%
    
    
      
        Physiologic 
          Region | 
        PO2 
          (mm Hg) | 
        PCO2 
          (mm Hg) | 
      
      
        | inspired air | 
        159 | 
        0.23 | 
      
      
        | trachea | 
        149 | 
        0.21 | 
      
      
        | alveolus | 
        100 | 
        40 | 
      
      
        | pulmonary vein | 
        95 | 
        40 | 
      
      
        | pulmonary artery | 
        40 | 
        46 | 
      
    
    
     
  
- important notes
    
      - pulmonary artery (high pressure) contains deoxygenated
        blood (from systemic veins)
      
 - pulmonary vein (low pressure) contains oxygenated blood
        (to systemic arteries)
      
 - PAO2 can be computed from the
        alveolar gas equation
    
 
  
2. Variations in Alveolar Ventilation 

  
    A = f * (VT - VD) = (10/min) * (0.65 L -
    0.15 L) = 5.0 L/min
  - mean PAO2 
    
 A and
    mean PACO2 
    1/ 
 A
   
 
    A above metabolic demand results in hyperventilation with 
    PAO2 and 
    PACO2
  
    
 A
    below metabolic demand results in hypoventilation with 
    PAO2 and 
    PACO2
  - such changes in ventilatory PACO2 are
    important for maintaining acid/base balance
 
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu
 
 
Alveolar-Arterial Gradient
  - Red Blood Cell Transit Time
    
 
    
      - Ttransit = pulmonary capillary volume /
        cardiac output
      
 - Ttransit = (75 mL) * (60 sec/min) / (6000 mL/min)
        = 0.75 sec
      
 - normally, gas equilibrations across the
        alveolocapillary membrane are complete in 0.25 sec
      
 - the safety factor for gas equilibration is 0.5 sec or
        2/3 of the cap length
      
 - abnormal gas equilibrations
        
          
            Ttrans (< 0.25 sec) due to 
            pulmonary capillary volume or 
            cardiac output
          
            respiratory membrane conductance (DLgas)
        
     
     
  
 - Anatomical and Physiological Shunts
    
      - systemic arterial gas tensions are not exactly matched
        to mean alveolar gas values
      
 - PaO2 < PAO2
        by 
 5 mm
        Hg and PACO2 > PACO2 by 
        0.5 mm Hg (A-a gradient)
       - A-a gradient is attributed shunt flow bypassing the gas
        exchange zone
        
          - anatomical shunts: post-pulmonary shunts, bronchial
            circulation, ventricular septal defects
          
 - physiological shunts: ventilation/perfusion
            inequalities
        
 
       - clinically, PaO2 > 85 mm Hg are
        considered normal
    
 
 
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu
 
Arterial Hypoxemia
  - Hypoventilation
    
      - problem:  V A  PaO2 and  CaO2 with no
        change in A-a gradient
        
          - nervous system defects (CNS, NM junction)
          
 - toxic drug effects (barbiturates, morphine)
        
 
       - solution:  V A with possible O2 supplementation
        
          - mechanical ventilation
          
 - respiratory stimulants
        
 
     
     
  
 - Diffusion Impairment
    
      - problem:  DLO2  PaO2 and  CaO2 with
         A-a gradient
        
          - interstitial fibrosis ( thickness of alveolar
            capillary membrane)
          
 - interstitial pneumonia ( thickness of alveolar
            cap membrane)
          
 - pulmonary edema with alveolar flooding ( area
            gas exchange)
        
 
       - solution:  PAO2, but beware of oxygen toxicity
        
          - cute 100% O2 (< 2 days) induces  pulmonary
            capillary permeability and alveolar edema
          
 - chronic 100% O2 (> 2 days) induces interstitial
            fibrosis &  Clung
        
 
     
     
  
 - Anatomical Shunt
    
      - problem:  venous admixture  PaO2 & 
        CaO2 with  A-a gradient
        
          - normal shunts: venous drainage from thebesian &
            bronchial circ
          
 - abnormal shunts: atrial or septal defects, patent
            ductus arteriosus
        
 
       - solution: surgical repair of arterial-venous
        anastomosis
        
          - oxygen administration will not help (diagnostic
            test for shunt)
          
 - PaCO2 may not be raised above normal (40 mm Hg)
        
 
     
     
  
 - Ventilation/Perfusion Inequality
    
      - problem:  V A/Q  PaO2 and  CaO2
        
          - chronic obstructive pulmonary disease (COPD)
            (emphysema, bronchitis)
          
 - pulmonary embolism
        
 
       - solution:  PAO2 but be aware of induced 
        physiologic shunt blood flow
        
          - very low V A/Q ratio alveolar units may become
            atelectic
          
 - PaO2 is still improved with oxygen supplementation
        
 
     
 
Diffusion Path   
Diffusion Capacity    Alveolar
Gas Partial Pressure     A-a 
Gradient   Hypoxemia 
MainMenu